Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
Chemistry ; 30(15): e202303422, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38240191

RESUMO

The electrocatalytic CO2 reduction (ECR) to produce valuable fuel is a promising process for addressing atmospheric CO2 emissions and energy shortages. In this study, Cl-anion doped cadmium sulfide structures were directly fabricated on a nickel foam surface (Cl/CdS-NF) using an in situ hydrothermal method. The Cl-anion doping could significantly improve ECR activity for CO production in ionic liquid and acetonitrile mixed solution, compared to pristine CdS. The highest Faradaic efficiency of CO is 98.1 % on a Cl/CdS-NF-2 cathode with an excellent current density of 137.0 mA cm-2 at -2.25 V versus ferrocene/ferrocenium (Fc/Fc+ , all potentials are versus Fc/Fc+ in this study). In particular, CO Faradaic efficiencies remained above 80 % in a wide potential range of -2.05 V to -2.45 V and a maximum partial current density (192.6 mA cm-2 ) was achieved at -2.35 V. The Cl/CdS-NF-2, with appropriate Cl anions, displayed abundant active sites and a suitable electronic structure, resulting in outstanding ECR activity. Density functional theory calculations further demonstrated that Cl/CdS is beneficial for increasing the adsorption capacities of *COOH and *H, which can enhance the activity of the ECR toward CO and suppress the hydrogen evolution reaction.

2.
J Pineal Res ; 76(5): e12987, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38975671

RESUMO

Sleep deprivation (SD) has been associated with a plethora of severe pathophysiological syndromes, including gut damage, which recently has been elucidated as an outcome of the accumulation of reactive oxygen species (ROS). However, the spatiotemporal analysis conducted in this study has intriguingly shown that specific events cause harmful damage to the gut, particularly to goblet cells, before the accumulation of lethal ROS. Transcriptomic and metabolomic analyses have identified significant enrichment of metabolites related to ferroptosis in mice suffering from SD. Further analysis revealed that melatonin could rescue the ferroptotic damage in mice by suppressing lipid peroxidation associated with ALOX15 signaling. ALOX15 knockout protected the mice from the serious damage caused by SD-associated ferroptosis. These findings suggest that melatonin and ferroptosis could be targets to prevent devastating gut damage in animals exposed to SD. To sum up, this study is the first report that proposes a noncanonical modulation in SD-induced gut damage via ferroptosis with a clearly elucidated mechanism and highlights the active role of melatonin as a potential target to maximally sustain the state during SD.


Assuntos
Ferroptose , Melatonina , Camundongos Knockout , Privação do Sono , Animais , Camundongos , Melatonina/metabolismo , Melatonina/farmacologia , Privação do Sono/metabolismo , Masculino , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos C57BL , Peroxidação de Lipídeos , Araquidonato 15-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/genética , Araquidonato 12-Lipoxigenase
3.
Inorg Chem ; 63(15): 6813-6821, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38573325

RESUMO

The unique properties of direct bandgap semiconductors make it important to search for semiconductors exhibiting this phenomenon in perovskite materials. In this study, we employed first-principles calculations to investigate the crystal structures, magnetic configurations, and electronic properties of hexagonal perovskite BaMnO3 in its 4H and 6H phases. The results indicate that both structures exhibit antiferromagnetic characteristics, in which the Mn-O-Mn superexchange plays the dominant role in the 4H phase, although there is a competition between the Mn-Mn direct exchange interaction and the Mn-O-Mn superexchange interaction. In contrast, these two interactions exhibit harmonious coexistence in the 6H phase, and the two antiferromagnetic transitions occurring in the experimental phase should be related to the synergistic effect between them. Despite their different internal arrangements, they exhibit the same charge combination of Ba2+Mn4+O2-3. More importantly, both phases exhibit semiconductor properties with a direct bandgap, making it suitable to serve as an alternative material for photovoltaic and optoelectronic devices. In particular, the band gap of the 4H phase is just the right size to absorb visible light, and the 6H phase should be a potential candidate to absorb light in the ultraviolet region.

4.
Fish Shellfish Immunol ; 151: 109665, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38830521

RESUMO

Bacterial septicemia in freshwater fish is mainly caused by Aeromonas hydrophila infection, which affects the development of aquaculture industry. In the context of sustainable aquaculture, subunit vaccines are of great values because they play positive roles in reducing the overuse of antibiotics and protecting aquatic animals against bacterial infection. In this study, the recombinant outer membrane protein OmpTS of A. hydrophila were used as subunit vaccine to immunize Megalobrama amblycephala, and its immunoprotective effect and host immune responses were evaluated. The survival rates of the vaccinated groups after bacterial infection were significantly higher than that of the control group, especially of the OmpTS high-dose vaccinated group. The better protective effects of vaccinated groups might be attributed to the increased levels of serum IgM-specific antibody titer, the reduced relative abundance of A. hydrophila in various tissues, the increased number of immune-positive cells with different epitopes, the up-regulated expression levels of immune-related genes, and the enhanced activities of antibacterial enzymes. In conclusion, OmpTS subunit vaccine could strongly induce host immune responses in M. amblycephala, thereby enhancing both cellular and humoral immunity, which exhibited excellent and effective immunoprotective efficacy.


Assuntos
Aeromonas hydrophila , Vacinas Bacterianas , Cyprinidae , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Vacinas de Subunidades Antigênicas , Aeromonas hydrophila/imunologia , Animais , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Cyprinidae/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Imunidade Humoral
5.
Phys Chem Chem Phys ; 26(3): 2509-2518, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38170798

RESUMO

Single-atom catalysts (SACs) have attracted great attention for various chemical reactions because of their strong activity, high metal utilization ratio, and low cost. Here, by using the density functional theory (DFT) method, the stability of a single VIII-group metal atom (M = Ni, Pd, Pt) anchored on the defective hexagonal boron nitride (h-BN) sheet and its possible application in oxidative desulfurization (ODS) are investigated. Calculations show that the stability of the single M atom embedded in the h-BN surface with B and N vacancies is strikingly enhanced compared to that on the perfect h-BN surface. The catalytic activities of the defective h-BN-supported single metal atom are further studied by the activation of molecular oxygen and subsequent oxidation of dibenzothiophene (DBT). O2 is activated to the super-oxo state with large interaction energies on three M/VN surfaces. However, among the three M/VB surfaces, only Pt/VB performs efficient activation of O2. The oxidation of DBT proceeds in two steps; the rate-determining step is the initial step, in which activated O2 oxidizes DBT to produce sulfoxide. By comparing the energy barrier in the first reaction step, both Ni/VN and Pt/VB are revealed as promising candidates for the ODS reaction.

6.
Molecules ; 29(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611826

RESUMO

With the increasingly strict limitations on emission standards of vehicles, deep desulfurization in fuel is indispensable for social development worldwide. In this study, a series of hybrid materials based on SiO2-supported polyoxometalate ionic liquid were successfully prepared via a facile ball milling method and employed as catalysts in the aerobic oxidative desulfurization process. The composition and structure of prepared samples were studied by various techniques, including FT-IR, UV-vis DRS, wide-angle XRD, BET, XPS, and SEM images. The experimental results indicated that the synthesized polyoxometalate ionic liquids were successfully loaded on SiO2 with a highly uniform dispersion. The prepared catalyst (C16PMoV/10SiO2) exhibited good desulfurization activity on different sulfur compounds. Moreover, the oxidation product and active species in the ODS process were respectively investigated via GC-MS and ESR analysis, indicating that the catalyst can activate oxygen to superoxide radicals during the reaction to convert DBT to its corresponding sulfone in the fuel.

7.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(4): 643-648, 2024 Apr 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-39019794

RESUMO

Amyloidosis is a rare disease. This paper reports a case of localized secondary hypopharyngeal amyloidosis presenting with pulmonary tuberculosis as the initial symptom. The patient lacked specific clinical manifestations and primarily exhibited symptoms such as cough, sputum production, acid reflux, belching, and abdominal pain. Chest CT indicated bronchiectasis with infection and pulmonary tuberculosis. Digestive endoscopy revealed a white mucosal elevation at the right pyriform sinus of the hypopharynx. Pathological diagnosis confirmed amyloid deposits in the hypopharyngeal mucosal tissue. The patient tested positive for anti-amyloid A antibodies, Congo red staining (+), and periodate Schiff staining (+). Amyloidosis commonly affects the digestive system and may have various etiologies, often presenting with symptoms that overlap with other digestive system diseases, leading to frequent misdiagnosis and missed optimal treatment opportunities. The hypopharynx, a highly folded and narrow chamber that serves as a common passage for the digestive and respiratory tracts, can be effectively evaluated for amyloidosis using digestive endoscopy.


Assuntos
Amiloidose , Hipofaringe , Humanos , Amiloidose/diagnóstico , Amiloidose/diagnóstico por imagem , Hipofaringe/patologia , Hipofaringe/diagnóstico por imagem , Masculino , Endoscopia do Sistema Digestório/métodos
8.
Angew Chem Int Ed Engl ; 63(15): e202400857, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38356122

RESUMO

Photocatalytic oxygen reductive H2O2 production is a promising approach to alternative industrial anthraquinone processes while suffering from the requirement of pure O2 feedstock for practical application. Herein, we report a spaced double hydrogen bond (IC-H-bond) through multi-component Radziszewski reaction in an imidazole poly-ionic-liquid composite (SI-PIL-TiO2) and levofloxacin hydrochloride (LEV) electron donor for highly efficient and selective photocatalytic air reductive H2O2 production. It is found that the IC-H-bond formed by spaced imino (-NH-) group of SI-PIL-TiO2 and carbonyl (-C=O) group of LEV can switch the imidazole active sites characteristic from a covered state to a fully exposed one to shield the strong adsorption of electron donor and N2 in the air, and propel an intenser positive potential and more efficient orbitals binding patterns of SI-PIL-TiO2 surface to establish competitive active sites for selectivity O2 chemisorption. Moreover, the high electron enrichment of imidazole as an active site for the 2e- oxygen reduction ensures the rapid reduction of O2. Therefore, the IC-H-bond enables a total O2 utilization and conversion efficiency of 94.8 % from direct photocatalytic air reduction, achieving a H2O2 production rate of 1518 µmol/g/h that is 16 and 23 times compared to poly-ionic-liquid composite without spaced imino groups (PIL-TiO2) and TiO2, respectively.

9.
Small ; 19(35): e2301319, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37178410

RESUMO

Metal-organic frameworks (MOFs) as a promising platform for electrocatalytic CO2 conversion are still restricted by the low efficiency or unsatisfied selectivity for desired products. Herein, zirconium-based porphyrinic MOF hollow nanotubes with Cd sites (Cd-PCN-222HTs) are reported for electrocatalytic CO2 -to-CO conversion. The dispersed Cd species are anchored in PCN-222HTs and coordinated by N atoms of porphyrin structures. It is discovered that Cd-PCN-222HTs have glorious electrocatalytic activity for selective CO production in ionic liquid-water (H2 O)-acetonitrile (MeCN) electrolyte. The CO Faradaic efficiency (FECO ) of >80% could be maintained in a wide potential range from -2.0 to -2.4 V versus Ag/Ag+ , and the maximum current density could reach 68.0 mA cm-2 at -2.4 V versus Ag/Ag+ with a satisfied turnover frequency of 26 220 h-1 . The enhanced efficiency of electrocatalytic CO2 conversion of Cd-PCN-222HTs is closely related to its hollow structure, anchored Cd species, and good synergistic effect with electrolyte. The density functional theory calculations indicate that the dispersed Cd sites anchored in PCN-222HTs not only favor the formation of *COOH intermediate but also hinder the hydrogen evolution reaction, resulting in high activity of electrocatalytic CO2 -to-CO conversion.

10.
BMC Microbiol ; 23(1): 348, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978422

RESUMO

BACKGROUND: The vaginal microbiome is a dynamic community of microorganisms in the vagina. Its alteration may be influenced by multiple factors, including gestational status, menstrual cycle, sexual intercourse, hormone levels, hormonal contraceptives, and vaginal drug administration. Povidone iodine has been used before delivery to reduce infection that may be caused by the ascendance of pathogenic and opportunistic bacteria from the vagina to the uterus. This study aimed to elucidate the impact of povidone iodine use during delivery on the vaginal microbiome. METHODS: This study enrolled a total of 67 women from maternity services in three hospitals. During the delivery process, we have applied povidone iodine in three doses such as low dose, medium dose, and high dose based on the amount of povidone iodine administered, thus, we studied the three groups of women based on the doses applied. Vaginal swab samples were collected both before and immediately after delivery, and the microbial communities were characterized using 16 S rRNA sequencing. The identification of differentially abundant microbial taxa was performed using ZicoSeq software. RESULTS: Before delivery, the vaginal microbiome was dominated by the genus Lactobacillus, with different percentage observed (86.06%, 85.24%, and 73.42% for the low, medium, and high dose groups, respectively). After delivery, the vaginal microbial community was restructured, with a significant decrease in the relative abundance of Lactobacillus in all three groups (68.06%, 50.08%, and 25.89%), and a significant increase in alpha diversity across all 3 groups (P < 0.01). Furthermore, as the dose of povidone iodine used during delivery increased, there was a corresponding decrease in the relative abundance of Lactobacillus (P < 0.01). Contrary, there was an increase in microbial diversity and the relative abundances of Pseudomonas (0.13%, 0.26%, and 13.04%, P < 0.01) and Ralstonia (0.01%, 0.02%, and 16.07%, P < 0.01) across the groups. Notably, some functional metabolic pathways related to sugar degradation were observed to have significant change with increasing use of povidone iodine. CONCLUSION: Povidone iodine was associated with the vaginal microbiome alterations after parturition, and its significant change was associated to the dosage of povidone iodine administered. The escalation in iodine dosage was linked to a decrease in Lactobacilli abundance, and elevated prevalence of Pseudomonas and Ralstonia. There is a need for longitudinal studies to clearly understanding the effect of povidone iodine use on maternal and infant microbiome.


Assuntos
Microbiota , Povidona-Iodo , Feminino , Humanos , Gravidez , Povidona-Iodo/farmacologia , Vagina/microbiologia , Microbiota/genética , Bactérias/genética , Ciclo Menstrual , RNA Ribossômico 16S/genética
11.
Inorg Chem ; 62(5): 2394-2403, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36690351

RESUMO

Photoelectrochemical nitrate reduction reaction (PEC NIRR) could convert the harmful pollutant nitrate (NO3-) to high-value-added ammonia (NH3) under mild conditions. However, the catalysts are currently hindered by the low catalytic activity and slow kinetics. Here, we reported a heterostructure composed of CeO2 and BiVO4, and the "frustrated Lewis pairs (FLPs)" concept was introduced for understanding the role of Lewis acids and Lewis bases on PEC NIRR. The electron density difference maps indicated that FLPs were significantly active for the adsorption and activation of NO3-. Furthermore, carbon (C) improved the carrier transport ability and kinetics, contributing to the NH3 yield of 21.81 µg h-1 cm-2. The conversion process of NO3- to NH3 was tracked by 15NO3- and 14NO3- isotopic labeling. Therefore, this study demonstrated the potential of CeO2-C/BiVO4 for efficient PEC NIRR and provided a unique mechanism for the adsorption and activation of NO3- over FLPs.

12.
Inorg Chem ; 62(12): 4883-4893, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36912429

RESUMO

Single-atom adsorbents (SAAs) featuring maximized atom utilization and uniform isolated adsorption sites have aroused extensive research interest in recent years as a novel class of adsorption materials research. Nevertheless, it is still challenging to gain a fundamental understanding of the complicated behaviors of SAAs for adsorbing thiophenic compounds (THs). Herein, this work systematically investigated the mechanisms of adsorption desulfurization (ADS) over a single group IIIA metal atom (Ga, In, and Tl) anchored on hexagonal boron nitride nanosheets (BNNSs) via density functional theory (DFT) calculations. First, all the possible doping sites have been considered and their stabilities have been evaluated by the doped energy. DFT calculations reveal that metal atoms prefer to substitute B atoms on BNNSs rather than N atoms. Additionally, SAAs all exhibit considerably enhanced adsorption capacity for THs primarily by the sulfur-metal (S-M) bond with π-π interactions maintained. Among them, In-atom-based SAAs would be adequate to provide the highest adsorption energy (In_cen_B, -40.1 kcal mol-1). Furthermore, from the perspective of adsorption energy, the SAAs show superior selectivity to THs than aromatic compounds due to the newly formed S-M bond. We hope that our work will manifest the design and application of SAAs in the field of ADS and shed light on a new strategy for fabricating SAAs based on BNNSs.

13.
Inorg Chem ; 62(43): 17883-17893, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37842934

RESUMO

The exploitation of highly efficient and cost-effective selective adsorbents for adsorptive desulfurization (ADS) remains a challenge. Fortunately, single-atom adsorbents (SAAs) characterized by maximized atom utilization and atomically dispersed adsorption sites have great potential to solve this problem as an emerging class of adsorption materials. Herein, aiming at improving the efficiency of ADS performance via the economical and feasible strategy, the desirable SAAs have been fabricated by uniformly anchoring aluminum (Al) atoms on hexagonal boron nitride nanofibers (BNNF) via an in situ pyrolysis method. Remarkably, Al-BN-1.0 exhibited a superior adsorption capacity of 46.1 mg S/g adsorbent for dibenzothiophene, with a 45% increase in adsorption capacity compared to the pristine BNNF. Additionally, it demonstrated excellent adsorption of other thiophene sulfides. Moreover, the ADS mechanisms have been investigated through special adsorption experiments combined with density functional theory (DFT) calculations. It was demonstrated that the superior ADS performance and selectivity of Al-BN-1.0 originate from the sulfur-aluminum (S-Al) and π-π interactions cooperating synergistically. This work would cast light on a novel fabrication strategy for the SAAs based on the two-dimensional material with a tunable metal site configurations and densities for varied selective adsorption and separation.

14.
Int J Mol Sci ; 24(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36768530

RESUMO

Mannan oligosaccharides (MOS) are functional oligosaccharides with beneficial effects on the non-specific immunity of Megalobrama amblycephala, but systematic studies on the immunomodulatory mechanisms of MOS are still lacking. To investigate the protective mechanisms of three different levels of dietary MOS supplementation on the intestinal immunity of juvenile M. amblycephala, comparative digital gene expression (DGE) profiling was performed. In this study, 622 differentially expressed genes (DEGs) were identified, while the similar expression tendency of 34 genes by qRT-PCR validated the accuracy of the DGE analyses. Gene Ontology (GO) enrichment revealed that the DEGs were mainly enriched in two functional categories of biological process and molecular function. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the DEGs were mainly related to complement and coagulation cascades, coagulation cascades, platelet activation, natural killer cell mediated cytotoxicity, Fc gamma R-mediated phagocytosis and antigen processing and presentation. In addition, the pro-inflammatory, apoptosis and tight junction-related genes were more significantly up-regulated upon infection in the dietary MOS groups to enhance host immune functions and maintain the stability of the intestinal barrier. These results will be helpful to clarify the regulatory mechanism of MOS on the intestinal immunity of M. amblycephala and lay the theoretical foundation for the prevention and protection of fish bacterial diseases.


Assuntos
Cyprinidae , Cipriniformes , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Cyprinidae/metabolismo , Aeromonas hydrophila/genética , Mananas/farmacologia , Mananas/metabolismo , Dieta , Perfilação da Expressão Gênica , Cipriniformes/genética , Imunidade , Infecções por Bactérias Gram-Negativas/microbiologia , Proteínas de Peixes/genética
15.
Molecules ; 28(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38067473

RESUMO

Acidic deep eutectic solvents (DESs) have been considered desirable extractants and catalysts for desulfurization. However, their hydrogen bond donors (HBDs) are usually sole organic acids, which are not conducive to efficient green catalysis. Herein, a novel inorganic-organic dual-acid DES (DADES) was reported for efficient extractive and oxidative desulfurization. Benefiting from the physical interaction among the three components in a DADES, a transparent homogeneous liquid can be obtained even though inorganic acid (boric acid, BA) and organic acid (acetic acid, AA) can be immiscible. Furthermore, the dual-acid HBD can increase the acidity of the DADES and reduce its viscosity, accelerating its mass transfer efficiency and enhancing its catalytic activity. With 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) as the hydrogen bond acceptor, [Bmim]Cl/BA/0.3AA effectively activated hydrogen peroxide and achieved sulfur removal of 96.6% at 40 °C. Furthermore, the universality of the synergistic effect in various DADESs was confirmed by the modulation of the types of organic acids. This study not only motivates the construction of more intriguing novel DESs based on the DADES concept but also highlights their potential in clean fuel production.

16.
Eur J Haematol ; 108(4): 298-309, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34997652

RESUMO

OBJECTIVE: Circulating tumor DNA (ctDNA) is emerging as a versatile biomarker for noninvasive genotyping and response monitoring in specific B-cell lymphomas; however, few studies have been conducted to explore ctDNA-based mutation profiling across non-Hodgkin lymphomas (NHLs) and genomic changes after initiation of chemotherapy. METHODS: A targeted sequencing of 362 genes was performed to detect the mutation profiles in paired blood and tissue samples from 42 NHL patients. Genomic alterations were explored in 11 diffuse large B-cell lymphoma (DLBCL) patients using paired blood samples collected pre- and post-R-CHOP chemotherapy. RESULTS: The frequencies of PIM1, MYD88, MYC, ZNF292, JAK, and MAF mutations were higher in aggressive than in indolent B-cell lymphoma and NK/T subtypes. Tumor mutation burden in blood samples was higher in aggressive than in indolent B-cell lymphomas and higher in patients who progressed than in those who responded to treatments. Our data also revealed significant enhance of concordance index through integrating mutated genes that were significantly associated with prognosis into International Prognostic Index-based prognostic model. Moreover, acquisition of mutations such as PCLO_p.L1220Tfs*3 was associated with resistance to R-CHOP in DLBCL patients. CONCLUSIONS: Our findings illustrated distinct mutation patterns across various NHL subtypes and suggested the association of genomic alterations in ctDNA with treatment outcomes.


Assuntos
DNA Tumoral Circulante , Linfoma Difuso de Grandes Células B , Linfoma não Hodgkin , Proteínas de Transporte/genética , DNA Tumoral Circulante/genética , Humanos , Linfoma Difuso de Grandes Células B/diagnóstico , Linfoma não Hodgkin/diagnóstico , Linfoma não Hodgkin/tratamento farmacológico , Linfoma não Hodgkin/genética , Mutação , Proteínas do Tecido Nervoso/genética , Prognóstico
17.
Inorg Chem ; 61(51): 21067-21075, 2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36511781

RESUMO

Modulating the electronic characteristics of catalysts plays a significant role in optimizing their catalytic activity. Herein, Mn-doped nickel molybdate (MNMO) nanorods are synthesized via replacing the partial Ni sites by the Mn element, engineering a bimetallic synergistic effect to enhance the activation of oxygen (O2). Compared with the extremely low catalytic activity of pristine nickel molybdate (NiMoO4), complete desulfurization can be achieved by MNMO under the same reaction conditions. Characterization results show that the electronic structure and surface atomic composition of pure NiMoO4 will be modulated owing to the introduction of Mn atoms, leading to the enhancement of the oxygen vacancy content and stronger O2 activation capacity. Besides, the optimized catalyst MNMO-20 also displays satisfactory cycle performance, and the sulfur removal of dibenzothiophene still maintains 96.1% after six times of recycling. The distinctive engineering strategy and simple synthesis method provide a new insight in designing and developing oxidative desulfurization catalysts with high stability and effectivity.

18.
Mediators Inflamm ; 2022: 2808249, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35633656

RESUMO

Objectives: Sepsis is characterized as a dysregulated host immune response to infection and has been known to be closely associated with the gut microbiome. This study was aimed at investigating the gut microbial profiles of Zhuang ethnic patients with sepsis. Method: Eleven Zhuang ethnic patients with sepsis and 20 healthy individuals (controls) were recruited at the Baise City People's Hospital, China. Their gut microbial community profiles were analyzed by 16S rRNA gene sequencing using the Illumina MiSeq system. Results: The gut microbial community of patients with sepsis was significantly altered compared to that of the healthy individuals based on the results of principal coordinate analysis and microbial ecological networks. Additionally, significantly lower microbial alpha diversity was observed in patients with sepsis than in healthy individuals. In particular, the enrichment of Bilophila, Burkholderia, Corynebacterium, and Porphyromonas, along with the reduced abundance of a large number of short-chain fatty acid-producing microbes, including Roseburia, Bifidobacterium, Faecalibacterium, Coprococcus, Blautia, Clostridium, Ruminococcus, and Anaerostipe was observed in patients with sepsis compared to the control group. Moreover, patients with sepsis could be effectively classified based on the abundance of these bacteria using a support vector machine algorithm. Conclusion: This study demonstrated significant differences in the gut microbiome between Zhuang ethnic patients with sepsis and healthy individuals. In the future, it is necessary to determine whether such alterations are the cause or consequence of sepsis.


Assuntos
Microbioma Gastrointestinal , Sepse , Clostridiales , Etnicidade , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Humanos , RNA Ribossômico 16S/genética
19.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36361921

RESUMO

CD68 is a highly glycosylated transmembrane glycoprotein that belongs to the lysosome-associated membrane glycoprotein family and is involved in various immune processes. In this study, Megalobrama amblycephala CD68 (MaCD68) was cloned and characterized, and its expression patterns and evolutionary characteristics were analyzed. The coding region of MaCD68 was 987 bp, encoding 328 amino acids, and the predicted protein molecular weight was 34.9 kDa. MaCD68 contained two transmembrane helical structures and 18 predicted N-glycosylation sites. Multiple sequence alignments showed that the MaCD68 protein had high homology with other fish, and their functional sites were also highly conserved. Phylogenetic analysis revealed that MaCD68 and other cypriniformes fish clustered into one branch. Adaptive evolution analysis identified several positively selected sites of teleost CD68 using site and branch-site models, indicating that it was under positive selection pressure during evolution. Quantitative real-time reverse transcription polymerase chain reaction analysis showed that MaCD68 was highly expressed in the head kidney, spleen, and heart. After Aeromonas hydrophila infection, MaCD68 was significantly upregulated in all tested tissues, peaking at 12 h post-infection (hpi) in the kidney and head kidney and at 120 hpi in the liver and spleen, suggesting that MaCD68 participated in the innate immune response of the host against bacterial infection. Immunohistochemical and immunofluorescence analyses also showed that positive signals derived from the MaCD68 protein were further enhanced after bacterial and lipopolysaccharide treatment, which suggested that MaCD68 is involved in the immune response and could be used as a macrophage marker. Biological activity analysis indicated that recombinant MaCD68 (rMaCD68) protein had no agglutination or bactericidal effects on A. hydrophila but did have these effects on Escherichia coli. In conclusion, these results suggest that MaCD68 plays a vital role in the immune response against pathogens, which is helpful in understanding the immune responses and mechanisms of M. amblycephala.


Assuntos
Cyprinidae , Cipriniformes , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Cyprinidae/genética , Infecções por Bactérias Gram-Negativas/genética , Infecções por Bactérias Gram-Negativas/veterinária , Filogenia , Sequência de Aminoácidos , Clonagem Molecular , Sequência de Bases , Aeromonas hydrophila/genética , Cipriniformes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Peixes/metabolismo
20.
Molecules ; 27(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35889339

RESUMO

Based on the acid-base neutralization, the (1-methylimidazolium)(tetrazol-1-yl)borane was successfully synthesized by taking advantage of the acidity of the tetrazole and the basicity of the 1-methylimidazole borane complex. Through HRMS, NMR, and FT-IR, the structure of synthetic compounds was characterized in detail. Concerning about the (1-methylimidazolium)(tetrazol-1-yl)borane, it had an ignition-delay time of about 25 ms and a density specific impulse over 351 s·g/cm3, making it a suitable candidate for green hypergolic fuels. Moreover, it also demonstrated that introducing tetrazole into the borane could be an appropriate strategy to adjust the performance of the energy of those borane compounds.


Assuntos
Boranos , Imidazóis , Espectroscopia de Infravermelho com Transformada de Fourier , Tetrazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA