Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36676296

RESUMO

Leakage in the diaphragm wall is difficult to detect in deep foundation pits. In this study, the conceptual model of active and passive thermal leak detection methods was proposed according to the occurrence of temperature field anomalies caused by seepage. Experiments were performed using a heating system and an optical fiber temperature measurement system to verify the thermal leakage detection systems. Numerical simulations were performed to understand the mechanism of the detecting method. Results indicated that the optical cable could detect the low-temperature anomaly in the active temperature field leak detection. The arrangement method of the leakage detection system was also presented in actual engineering.

2.
Materials (Basel) ; 16(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36770059

RESUMO

During underground space exploitation in the urbanization process, numerous foundation pits were constructed where a diaphragm wall was often used as a retaining structure and waterproof curtain. Due to complicated engineering geological conditions or improper construction, diaphragm walls and wall joints often exhibit quality defects. Groundwater leaked from these quality defects to foundation pits during excavation, endangering the safety of the pit and surrounding facilities. The current leakage identification of the underground retaining structure was performed by artificial visual detection, which cannot satisfy the engineering requirement. The temperature field in the leakage area of the diaphragm wall was different from other areas. The leakage wall imaging system using a thermal imager was efficient in visualizing leaking, which was not visible to the naked eye. In this study, infrared thermal imaging technology was introduced in potential leakage detection for the diaphragm wall of a foundation pit. The infrared radiation characteristics of the diaphragm wall leakage and the potential leakage parts were studied through laboratory simulation tests and on-site detection methods. The maximum temperature appeared at the water outlet and the surface of the defect with hidden defect, and the temperature field was symmetrically distributed along the cross-section direction. In the potential leakage area, the temperature difference at the penetration point was 23.4 °C when the initial water pressure was 10 kPa. The temperature difference at the penetration point was 21.8 °C when the initial water pressure was 30 kPa. In the field test, the maximum temperature difference between the leakage area and the surrounding wall was 4.5 °C. The study can provide a reference for similar engineering.

3.
Materials (Basel) ; 16(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37176348

RESUMO

The construction of island airports on coral reefs inevitably encounters the impact load of aircraft takeoff and landing. However, previous studies have not presented a detailed description of the dynamic response of the coral sand beneath the runways of island reclamation airports under aircraft load. In the current study, the coral sand of Mischief Reef Airport in the Nansha Islands, China, was selected as the background. The pore water pressure and strain characteristics of reshaped coral sand under aircraft loads with different dynamic stress amplitudes and vibration frequencies were studied using dynamic triaxial tests. Particle discrete element software was employed to study the deformation characteristics of coral sand with different particle sizes and porosities under aircraft loads. Results show that when the dynamic stress amplitude and vibration frequency were small, the pore water pressure and strain of the coral sand samples gradually increased with the number of load cycles, and the growth rate became increasingly small. When the dynamic stress amplitude and vibration frequency were large, the axial strain of the coral sand samples increased with the vibration frequency, and the growth rate exhibited an increasing trend. The deformation of the coral sand samples increased with porosity under aircraft loading. The larger the variation range of the coral sand particle size was, the larger the coral sand deformation caused by aircraft takeoff and landing load was. These results can provide a reference for the treatment and repair of the airstrip foundation of island airports.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA