Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Comput Chem ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39135268

RESUMO

The two-dimensional (2D) monolayer material MoSi2N4 was successfully synthesized in 2020[Hong et al., Science 369, 670, (2020)], exhibiting a plethora of new phenomena and unusual properties, with good stability at room temperature. However, MA2Z4 family monolayer materials involve primarily transition metal substitutions for M atoms. In order to address the research gap on lanthanide and actinide MA2Z4 materials, this work conducts electronic structure calculations on novel 2D MSi2N4 (M = La, Eu) monolayer materials by employing first-principles methods and CASTEP. High carrier mobility is discovered in the indirect bandgap semiconductor 2D LaSi2N4 monolayer (~5400 cm2 V-1 s-1) and in the spin (spin-down channel) carrier mobility of the half-metallic ferromagnetic EuSi2N4 monolayer (~2800 cm2 V-1 s-1). EuSi2N4 monolayer supplements research on spin carrier mobility in half-metallic ferromagnetic monolayer materials at room temperature and possesses a magnetic moment of 5 µB, which should not be underestimated. Furthermore, due to the unique electronic band structure of EuSi2N4 monolayer (with the spin-up channel exhibiting metallic properties and the spin-down channel exhibiting semiconductor properties), it demonstrates a 100% spin polarization rate, presenting significant potential applications in fields such as magnetic storage, magnetic sensing, and spintronics.

2.
J Comput Chem ; 45(14): 1087-1097, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38243618

RESUMO

A series of pentagonal bipyramidal anionic germanium clusters doped with heavy rare earth elements, REGe 6 - (RE = Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu), have been identified at the PBE0/def2-TZVP level using density functional theory (DFT). Our findings reveal that the centrally doped pentagonal ring structure demonstrates enhanced stability and heightened aromaticity due to its uniform bonding characteristics and a larger charge transfer region. Through natural population analysis and spin density diagrams, we observed a monotonic decrease in the magnetic moment from Gd to Yb. This is attributed to the decreasing number of unpaired electrons in the 4f orbitals of the heavy rare earth atoms. Interestingly, the system doped with Er atoms showed lower stability and anti-aromaticity, likely due to the involvement of the 4f orbitals in bonding. Conversely, the systems doped with Gd and Tb atoms stood out for their high magnetism and stability, making them potential building blocks for rare earth-doped semiconductor materials.

3.
Phys Chem Chem Phys ; 26(4): 2986-2994, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38163990

RESUMO

Rare earth elements have high chemical reactivity, and doping them into semiconductor clusters can induce novel physicochemical properties. The study of the physicochemical mechanisms of interactions between rare earth and tin atoms will enhance our understanding of rare earth functional materials from a microscopic perspective. Hence, the structure, electronic characteristics, stability, and aromaticity of endohedral cages MSn16- (M = Sc, Y, La) have been investigated using a combination of the hybrid PBE0 functional, stochastic kicking, and artificial bee colony global search technology. By comparing the simulated results with experimental photoelectron spectra, it is determined that the most stable structure of these clusters is the Frank-Kasper polyhedron. The doping of atoms has a minimal influence on density of states of the pure tin system, except for causing a widening of the energy gap. Various methods such as ab initio molecular dynamics simulations, the spherical jellium model, adaptive natural density partitioning, localized orbital locator, and electron density difference are employed to analyze the stability of these clusters. The aromaticity of the clusters is examined using iso-chemical shielding surfaces and the gauge-including magnetically induced currents. This study demonstrates that the stability and aromaticity of a tin cage can be systematically adjusted through doping.

4.
J Phys Chem A ; 128(28): 5459-5472, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38973649

RESUMO

In this study, we employ density functional theory along with the artificial bee colony algorithm for cluster global optimization to explore the low-lying structures of TeBnq (n = 3-16, q = 0, -1). The primary focus is on reporting the structural properties of these clusters. The results reveal a consistent doping pattern of the tellurium atom onto the in-plane edges of planar or quasi-planar boron clusters in the most energetically stable isomers. Additionally, we simulate the photoelectron spectra of the cluster anions. Through relative stability analysis, we identify three clusters with magic numbers -TeB7-, TeB10, and TeB12. The aromaticity of these clusters is elucidated using adaptive natural density partitioning (AdNDP) and magnetic properties analysis. Notably, TeB7- exhibits a perfect σ-π doubly aromatic structure, while TeB12 demonstrates strong island aromaticity. These findings significantly contribute to our understanding of the structural and electronic properties of these clusters.

5.
Ethn Health ; 29(4-5): 435-446, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38682471

RESUMO

OBJECTIVES: This study aimed to examine ethnic disparities in the prevalence of diabetes and its association with sleep disorders among the older adults Han and ethnic minority (Bai, Ha Ni, and Dai) population in rural southwest China. METHODS: A cross-sectional survey of 5,642 was conducted among the rural southwest population aged ≥60 years, consisting of a structured interview and measurement of fasting blood glucose, height, weight, and waist circumference. The Pittsburgh Sleep Quality Index (PSQI) was used to assess sleep quality. RESULTS: The overall prevalence of diabetes and sleep disorder was 10.2% and 40.1%, respectively. Bai participants had the highest prevalence of diabetes (15.9%) and obesity (9.9%)(P < 0.01), while Ha Ni participants had the lowest prevalence of diabetes (5.1%) and obesity (3.4%)(P < 0.01). The highest prevalence of sleep disorder (48.4%) was recorded in Bai participants, while Dai participants had the lowest prevalence of sleep disorder (25.6%)(P < 0.01). In all four studied ethnicities, females had a higher prevalence of sleep disorder than males (P < 0.01), and the prevalence of sleep disorder increased with age (P < 0.01). The results of multivariate logistic regression analysis indicated older adults with sleep disorder had a risk of developing diabetes (P < 0.05). Moreover, the higher educational level, family history of diabetes, and obesity were the main risk factors for diabetes in participants (P < 0.01). CONCLUSION: There are stark ethnic disparities in the prevalence of diabetes and sleep disorders in southwest China. Future diabetes prevention and control strategies should be tailored to address ethnicity, and improving sleep quality may reduce the prevalence of diabetes.


Assuntos
Diabetes Mellitus , População Rural , Transtornos do Sono-Vigília , Humanos , China/epidemiologia , China/etnologia , Feminino , Masculino , Idoso , Estudos Transversais , Transtornos do Sono-Vigília/etnologia , Transtornos do Sono-Vigília/epidemiologia , Prevalência , Pessoa de Meia-Idade , População Rural/estatística & dados numéricos , Diabetes Mellitus/etnologia , Diabetes Mellitus/epidemiologia , Etnicidade/estatística & dados numéricos , Disparidades nos Níveis de Saúde , Obesidade/etnologia , Obesidade/epidemiologia , Idoso de 80 Anos ou mais
6.
Molecules ; 29(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38999190

RESUMO

This paper systematically investigates the structure, stability, and electronic properties of niobium carbide clusters, NbmCn (m = 5, 6; n = 1-7), using density functional theory. Nb5C2 and Nb5C6 possess higher dissociation energies and second-order difference energies, indicating that they have higher thermodynamic stability. Moreover, ab initio molecular dynamics (AIMD) simulations are used to demonstrate the thermal stability of these structures. The analysis of the density of states indicates that the molecular orbitals of NbmCn (m = 5, 6; n = 1-7) are primarily contributed by niobium atoms, with carbon atoms having a smaller contribution. The composition of the frontier molecular orbitals reveals that niobium atoms contribute approximately 73.1% to 99.8% to NbmCn clusters, while carbon atoms contribute about 0.2% to 26.9%.

7.
Molecules ; 29(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38675512

RESUMO

The geometrical structures, relative stabilities, and electronic and magnetic properties of niobium carbon clusters, Nb7Cn (n = 1-7), are investigated in this study. Density functional theory (DFT) calculations, coupled with the Saunders Kick global search, are conducted to explore the structural properties of Nb7Cn (n = 1-7). The results regarding the average binding energy, second-order difference energy, dissociation energy, HOMO-LUMO gap, and chemical hardness highlight the robust stability of Nb7C3. Analysis of the density of states suggests that the molecular orbitals of Nb7Cn primarily consist of orbitals from the transition metal Nb, with minimal involvement of C atoms. Spin density and natural population analysis reveal that the total magnetic moment of Nb7Cn predominantly resides on the Nb atoms. The contribution of Nb atoms to the total magnetic moment stems mainly from the 4d orbital, followed by the 5p, 5s, and 6s orbitals.

8.
Cell Insight ; 3(2): 100146, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38425643

RESUMO

The programmed cell death 1 (PD-1) immune checkpoint of co-inhibitory signaling plays crucial roles in controlling the magnitude and duration of T cell activation to limit tissue damage and maintain self-tolerance. Cancer cells hijack the co-inhibitory pathway and escape immune surveillance by overexpressing the PD-1 ligand PD-L1. Immune checkpoint inhibitors, such as PD-1 blocking antibody have been approved for tumor immunotherapy. However, not all patients can benefit from PD-1 monotherapy. Combination immunotherapy based on PD-1 axis blockade substantially improves clinical anti-tumor efficacy. In this review, we briefly summarize the current progress on the mechanisms of PD-1-mediated inhibition of T cell activation and strategies for cancer combination immunotherapy.

9.
J Vis Exp ; (204)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38465928

RESUMO

Cationic nanostructures have emerged as an adjuvant and antigen delivery system that enhances dendritic cell maturation, ROS generation, and antigen uptake and then promotes antigen-specific immune responses. In recent years, retinoic acid (RA) has received increasing attention due to its effect in activating the mucosal immune response; however, in order to use RA as a mucosal adjuvant, it is necessary to solve the problem of its dissolution, loading, and delivery. Here, we describe a cationic nanoemulsion-encapsulated retinoic acid (CNE-RA) delivery system composed of the cationic lipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOTAP), retinoic acid, squalene as the oil phase, polysorbate 80 as surfactant, and sorbitan trioleate 85 as co-surfactant. Its physical and chemical properties were characterized using dynamic light scattering and a spectrophotometer. Immunization of mice with the mixture of antigen (ovalbumin, OVA) and CNE-RA significantly elevated the levels of anti-OVA secretory immunoglobulin A (sIgA) in vaginal lavage fluid and the small intestinal lavage fluid of mice compared with OVA alone. This protocol describes a detailed method for the preparation, characterization, and evaluation of the adjuvant effect of CNE-RA.


Assuntos
Adjuvantes Imunológicos , Imunização , Feminino , Animais , Camundongos , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Mucosa , Vacinação , Antígenos , Imunidade nas Mucosas , Tensoativos/farmacologia , Ovalbumina , Camundongos Endogâmicos BALB C
10.
ACS Omega ; 9(32): 35197-35208, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39157101

RESUMO

A series of minimally sized regular dodecahedron-embedded metallofullerene REC20 clusters (RE = Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, and Gd) as basic units of nanoassembled materials with tunable magnetism and UV sensitivity have been explored using density functional theory (DFT). The contribution of the 4f orbital of the rare earth atom at the center of the C20 cage to the frontier molecular orbital of REC20 gives the REC20 cluster additional stability. The AdNDP orbitals of the four REC20 superatoms that conform to the spherical jellium model indicate that through natural population analysis and spin density diagrams, we observe a monotonic increase in the magnetic moment from Ce to Gd. This is attributed to the increased number of unpaired electrons in the 4f orbitals of lanthanide rare earth atoms. The UV-visible spectrum of REC20 clusters shows strong absorption in the mid-UV and near-UV bands. REC20 clusters encapsulating lanthanide rare earth atoms stand out for their tunable magnetism, UV sensitivity, and stability, making them potential new self-assembly materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA