Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 54(5): 2626-2634, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-31944676

RESUMO

Secondary sulfate aerosols played an important role in aerosol formation and aging processes, especially during haze episodes in China. Secondary sulfate was formed via atmospheric oxidation of SO2 by OH, O3, H2O2, and transition-metal-catalyzed (TMI) O2. However, the relative importance of these oxidants in haze episodes was strongly debated. Here, we use stable sulfur isotopes (δ34S) of sulfate aerosols and a Rayleigh distillation model to quantify the contributions of each oxidant during a haze episode in Nanjing, a megacity in China. The observed δ34S values of sulfate aerosols showed a negative correlation with sulfur oxidation ratios, which was attributed to the sulfur isotopic fractionations during the sulfate formation processes. Using the average fractionation factor calculated from our observations and zero-dimensional (0-D) atmospheric chemistry modeling estimations, we suggest that OH oxidation was trivial during the haze episode, while the TMI pathway contributed 49 ± 10% of the total sulfate production and O3/H2O2 oxidations accounted for the rest. Our results displayed good agreement with several atmospheric chemistry models that carry aqueous and heterogeneous TMI oxidation pathways, suggesting the role of the TMI pathway was significant during haze episodes.


Assuntos
Poluentes Atmosféricos , Aerossóis , Catálise , China , Monitoramento Ambiental , Peróxido de Hidrogênio , Metais , Material Particulado , Isótopos de Enxofre
2.
J Agric Food Chem ; 68(31): 8143-8150, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32633945

RESUMO

In paddy soils, iron (Fe) forms are highly influenced by the seasonal redox changes and leave detectable isotope signals because of fractionation between different Fe forms. Here, we present Fe concentrations and Fe isotope compositions (expressed as δ56Fe values) in a paddy soil profile from Suzhou, China. Light Fe isotopes were enriched in two iron-accumulation layers (Br3 and G1) with high Fe concentrations. In particular, large shifts in both Fe concentrations and δ56Fe values were found at the Br2 and Br3 boundaries, showing fast and efficient transformation between these horizons. With sequential extraction, we show that Fe isotopes in the short-range-ordered Fe minerals and crystalline Fe oxides were lighter than those in the residual silicate minerals. Iron enriched in light isotopes was leached from the Ap horizon and subsequently moved to Br horizon, quickly precipitating there as Fe oxides.


Assuntos
Isótopos de Ferro/química , Solo/química , China , Oxirredução , Óxidos/química , Estações do Ano
3.
Sci Total Environ ; 688: 270-280, 2019 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-31229824

RESUMO

Nitrate source identification in river systems is important for water quality management. Recently, the oxygen isotopic anomaly of nitrate in atmospheric deposition (Δ17Oatm) is used to identify unprocessed atmospheric nitrate in river systems to reduce the uncertainty caused by the wide range of δ18O. In high-elevation regions, such as the Qinghai-Tibetan Plateau (QTP) featured with lower temperature and pressure as well as strong radiation, the Δ17Oatm might be different from that in low-elevation regions, but no relevant studies have been reported. In this work, Δ17Oatm in the QTP was studied, and the fingerprints of nitrate isotopes in synthetic fertilizer, livestock manure, domestic sewage, and soil organic nitrogen (SON) were identified and used to quantify various source contributions to riverine nitrate in the Yellow River and Changjiang River source regions located in the QTP during 2016-2017. The results showed that the average of Δ17Oatm in the QTP was 16.4‰, lower than the range (19-30‰) reported for the low-elevation regions. The possible mechanism is decreased O3 as well as increased hydroxyl and peroxy radical levels in the troposphere caused by the climate condition and ozone valley in the QTP will affect the production pathways of atmospheric nitrate. By combining the sewage discharge data with the output results of the SIAR (stable isotope analysis in R) model based on the stable isotope data, manure was determined to be one of the major sources to riverine nitrate for both rivers. The contributions of various sources to riverine nitrate were 47 ±â€¯10% for manure, 30 ±â€¯5% for SON, 10 ±â€¯4% for atmospheric precipitation, 9 ±â€¯2% for synthetic fertilizer, and 4 ±â€¯0% for sewage in the Yellow River source region. This study indicates that the unique atmospheric conditions in the QTP have led to a lower Δ17Oatm value, and atmospheric source makes a considerable contribution to riverine nitrate in the QTP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA