RESUMO
Psoriasis is a troublesome scaling skin disease with no high-effective medication available by far. Signal transducer and activator of transcription 3 (STAT3) has recently been revealed as a crucial player in the pathogenesis and progression of psoriasis and emerged as an intriguing antipsoriatic drug target. Naturally occurring lapachol and its quinone analogs had been discovered as effective STAT3 inhibitors, however, their antipsoriatic effects are not well investigated. Previously, we have reported a series of isothiazoloquinone lapachol derivatives. Here, the antipsoriastic potentials of these isothiazoloquinones were investigated and, in addition, 35 novel isoxazoloquinone derivatives were prepared and studied for their anti-psoriasis properties. Among them, the most potent antipsoriatic compound B20 determined by in vitro test on HaCaT cells could directly bind to STAT3, reduce STAT3 level and inhibit STAT3 nuclear translocation. In vivo studies showed that topical application of B20 could effectively alleviate IMQ-induced psoriasis in mice with no obvious side effects. In addition, B20 inhibited the production of interleukin 17 (IL-17A), a STAT3-downstream cytokine essential for the progression of psoriasis, both in vitro and in vivo. Thus, isoxazoloquinone B20 is a potent STAT3-targeting antipsoriatic agent worth of further investigation.
Assuntos
Psoríase , Fator de Transcrição STAT3 , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Psoríase/tratamento farmacológico , Humanos , Animais , Camundongos , Relação Estrutura-Atividade , Estrutura Molecular , Naftoquinonas/farmacologia , Naftoquinonas/química , Naftoquinonas/síntese química , Isoxazóis/farmacologia , Isoxazóis/química , Isoxazóis/síntese química , Relação Dose-Resposta a Droga , Camundongos Endogâmicos BALB CRESUMO
Spinosyn A (SPA), derived from a soil microorganism, Saccharopolyspora spinosa, and its derivative, LM2I, has potential inhibitory effects on a variety of cancer cells. However, the effects of SPA and LM2I in inhibiting the growth of human colorectal cancer cells and the molecular mechanisms underlying these effects are not fully understood. Cell viability was tested by using a 3-(4,5-dimethylthiazol-2-yl-)-2,5-diphenyltetrazolium bromide (MTT) assay and a colony formation assay. On the basis of the IC50 values of SPA and LM2I in seven colorectal cancer (CRC) cell lines, sensitive (HT29 and SW480) and insensitive (SW620 and RKO) cell lines were screened. The GSE2509 and GSE10843 data sets were used to identify 69 differentially expressed genes (DEGs) between sensitive and insensitive cell lines. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and protein-protein interactions (PPI) were performed to elucidate the molecular mechanisms of the DEGs. The hub gene of the DEGs was detected by Western blot analysis and verified using the CRISPR/Cas9 system. Our data indicate that SPA and its derivative LM2I have significant antiproliferative activity in seven colorectal cancer cell lines and colorectal xenograft tumors. On the basis of bioinformatics analysis, it was demonstrated that epidermal growth factor receptor (EGFR) was the hub gene of the DEGs and was associated with the inhibitory effects of SPA and LM2I in CRC cell lines. The study also revealed that SPA and LM2I inhibited the EGFR pathway in vitro and in vivo.
Assuntos
Neoplasias Colorretais , Macrolídeos , Humanos , Receptores ErbB , Bioensaio , Neoplasias Colorretais/tratamento farmacológicoRESUMO
Ginsenoside Rh2 is one of rare panaxidiols extracted from Panax ginseng and a potential estrogen receptor ligand that exhibits moderate estrogenic activity. However, the effect of Rh2 on growth inhibition and its underlying molecular mechanism in human breast cells are not fully understood. In this study, we tested cell viability by MTT and colony formation assays. Cell growth and cell cycle were determined to investigate the effect of ginsenoside Rh2 by flow cytometry. The expressions of estrogen receptors (ERs), TNFα, and apoptosis-related proteins were detected by qPCR and western blot analysis. The mechanisms of ERα and ERß action were determined using transfection and inhibitors. Antitumor effect of ginsenoside Rh2 against MCF-7 cells was investigated in xenograft mice. Our results showed that ginsenoside Rh2 induced apoptosis and G1/S phase arrest in MCF-7 cells. Treatment of cells with ginsenoside Rh2 down-regulated protein levels of ERα, and up-regulated mRNA and protein levels of ERß and TNFα. We also found that ginsenoside Rh2-induced TNFα over-expression is through up-regulation of ERß initiated by ginsenoside Rh2. Furthermore, ginsenoside Rh2 induced MCF-7 cell apoptosis via estrogen receptor ß-TNFα pathway in vivo. These results demonstrate that ginsenoside Rh2 promotes TNFα-induced apoptosis and G1/S phase arrest via regulation of ERß.
Assuntos
Neoplasias da Mama , Ginsenosídeos , Animais , Feminino , Humanos , Camundongos , Apoptose , Proteínas Reguladoras de Apoptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Proliferação de Células , Receptor alfa de Estrogênio , Receptor beta de Estrogênio/genética , Ginsenosídeos/farmacologia , Ligantes , Receptores de Estrogênio , RNA Mensageiro , Fator de Necrose Tumoral alfa/genéticaRESUMO
BACKGROUND: Breast cancer (BC) is a common malignant tumor with poor prognosis. Angiogenesis is related to the growth and progression of solid tumors and associated with prognosis. ZLM-7, SP1, VEGFA and miR-212-3p were associated with BC angiogenesis and proliferation, however the detailed mechanism was not clear. This study aimed to reveal the regulatory mechanism of angiogenesis of BC. METHODS: BC cell lines were treated with 10 nM ZLM-7 for 8 h. We detected protein expression level by western blot and RNA expression level by qRT-PCR. Overexpression or inhibition of miR-212-3p is performed using miR-212-3p mimics or miR-212-3p inhibitor, Sp1 overexpression using pcDNA3.1 vector. Angiogenesis was analyzed by co-culturing BC cell lines and HUVEC cells. To evaluate regulatory relationship between miR-212-3p and Sp1, dual luciferase assay was performed. Besides, the direct interaction between Sp1 and VEGFA was analyzed by ChIP. Migration and invasion were analyzed by transwell assay and proliferation was detected by clone formation assay. In mice xenograft model developed using BC cells, we also detected angiogenesis marker CD31 through immunohistochemistry. RESULTS: ZLM-7 up-regulated miR-212-3p and inhibited invasion, migration, proliferation and angiogenesis of BC, while miR-212-3p inhibitor antagonized such effects. Binding sequence was revealed between miR-212-3p and Sp1, and expression of Sp1 was inhibited by miR-212-3p on both protein and mRNA level. Sp1 could interact with VEGFA and promoted its expression. Overexpression of miR-212-3p inhibited migration, invasion, proliferation and angiogenesis of BC cell lines, while Sp1 overexpression showed the opposite effect and could antagonize these effects of miR-212-3p overexpression. ZLM-7 decreased VEGFA expression, which was rescued by co-transfection with miR-212-3p inhibitor. Similar, ZLM-7 could inhibit tumor growth and angiogenesis through the miR-212-3p/Sp1/VEGFA axis in vivo. CONCLUSIONS: ZLM-7 could directly up-regulate miR-212-3p in BC. MiR-212-3p could inhibit VEGFA expression through Sp1, thereby inhibiting angiogenesis and progression of BC.
Assuntos
Compostos de Anilina/farmacologia , Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , MicroRNAs/genética , Neovascularização Patológica/genética , Fator de Transcrição Sp1/genética , Sulfetos/farmacologia , Fator A de Crescimento do Endotélio Vascular/genética , Regiões 3' não Traduzidas , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Feminino , Humanos , Neovascularização Patológica/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição Sp1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
Cytochromes P450 (CYP450s), a superfamily of mono-oxygenases, are essential to generate highly functionalized secondary metabolites in plants and contribute to the diversification of specialized triterpenoid biosynthesis in eudicots. However, screening and identifying the exact CYP450 genes in ginsenoside biosynthesis is extremely challenging due to existence of large quantities of members in CYP450 superfamily. Therefore, to screen the CYP450 genes involved in ginsenoside biosynthesis, transcriptome dataset of Panax ginseng was created in our previous work using the technique of the next-generation sequencing. On the basis of bioinformatics analysis, 16 putative CYP450 genes with significant differential expression were screened from the dataset and submitted to GenBank, in which 11 of them have been cloned. Methyl jasmonate (MeJA) was used as an elicitor to analyze the expression profiles of candidate CYP450 genes by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). The results of qRT-PCR analysis revealed that the expression of some CYP450 genes were strongly induced by MeJA and showed different transcription levels at different treatment time points. Homology analysis indicated that each putative CYP450 protein of P. ginseng has a conserved domain consisting of E-E-R-F-P-R-G. The CYP450 genes were screened and cloned here to enrich the resources of CYP450 genes, and the results of bioinformatics analysis provided a foundation to further identify the function of CYP450s involved in ginsenoside biosynthesis. Furthermore, this study facilitated the construction of microbial cell factories for increasing the production of ginsenosides by means of metabolic engineering.
Assuntos
Acetatos/farmacologia , Ciclopentanos/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Oxilipinas/farmacologia , Panax/genética , Proteínas de Plantas/genética , Transcriptoma/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ginsenosídeos/biossíntese , Isoenzimas/genética , Isoenzimas/metabolismo , Panax/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
The aspartate aminotransferase-to-platelet ratio index has been reported to predict prognosis of patients with hepatocellular carcinoma. This study examined the prognostic potential of stratified aspartate aminotransferase-to-platelet ratio index for hepatocellular carcinoma patients undergoing curative liver resection. A total of 661 hepatocellular carcinoma patients were retrieved and the associations between aspartate aminotransferase-to-platelet ratio index and clinicopathological variables and survivals (overall survival and disease-free survival) were analyzed. Higher aspartate aminotransferase-to-platelet ratio index quartiles were significantly associated with poorer overall survival (p = 0.002) and disease-free survival (p = 0.001). Multivariate analysis showed aspartate aminotransferase-to-platelet ratio index to be an independent risk factor for overall survival (p = 0.018) and disease-free survival (p = 0.01). Patients in the highest aspartate aminotransferase-to-platelet ratio index quartile were at 44% greater risk of death than patients in the first quartile (hazard ratio = 1.445, 95% confidence interval = 1.081 - 1.931, p = 0.013), as well as 49% greater risk of recurrence (hazard ratio = 1.49, 95% confidence interval = 1.112-1.998, p = 0.008). Subgroup analysis also showed aspartate aminotransferase-to-platelet ratio index to be an independent predictor of poor overall survival and disease-free survival in patients positive for hepatitis B surface antigen or with cirrhosis (both p < 0.05). Similar results were obtained when aspartate aminotransferase-to-platelet ratio index was analyzed as a dichotomous variable with cutoff values of 0.25 and 0.62. Elevated preoperative aspartate aminotransferase-to-platelet ratio index may be independently associated with poor overall survival and disease-free survival in hepatocellular carcinoma patients following curative resection.
Assuntos
Aspartato Aminotransferases/sangue , Plaquetas/metabolismo , Carcinoma Hepatocelular/sangue , Neoplasias Hepáticas/sangue , Adulto , Idoso , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/cirurgia , Intervalo Livre de Doença , Feminino , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/cirurgia , Masculino , Pessoa de Meia-Idade , Período Pré-Operatório , Prognóstico , Resultado do TratamentoRESUMO
Dendritic cell (DC)-based immunotherapy has promising for treatment of non-small cell lung cancer (NSCLC). Melanoma-associated antigen 3 (MAGE-A3) is a tumor-specific antigen and expressed in approximately 35-40% of NSCLC tissues. Calreticulin (CALR) is a protein chaperone and can enhance DC maturation and antigen presentation. In this study, we evaluated the adjuvant activity of CALR in human DC maturation and their capacity to induce MAGE-A3-specific CD8+ cytotoxic T lymphocyte (CTL) responses to NSCLC in vitro. Infection with recombinant Ad-CALR and/or Ad-MAGE-A3, but not with control Ads, induced CALR and/or MAGE-A3 expression in DCs. Infection with Ad-CALR significantly increased the percentages of CD80+, CD83+, CD86+ and HLA-DR+ DCs and IL-12 secretion, but reduced IL-10 production in DCs. Co-culture of autologous lymphocytes with DC-Ad-CALR or DC-Ad-CM significantly increased the numbers of induced CD8+ CTLs. The percentages of IFNγ-secreting CTLs responding to SK-LU-1 and NCI-H522 NSCLC, but not to non-tumor NL-20 cells in Ad-C-CTL, Ad-M-CTL and Ad-CM-CTL were significantly higher than that of DC-CTL and Ad-null-CTL. Ad-C-CTL, Ad-M-CTL and Ad-CM-CTL, but not control DC-CTL and Ad-null-CTL, induced higher frequency of MAGE-A3+HLA-A2+ NCI-H-522 cell apoptosis, but did not affect the survival of MAGE-A3+HLA-A2- SK-LU-1 and non-tumor NL20 cells in vitro. Treatment with anti-HLA-I antibody, but not with anti-HLA-II, dramatically diminished the cytotoxicity of Ad-CM-CTLs against NCI-H522 cells. Our data indicated that CALR acted as an adjuvant to promote DC maturation, which induced CTL development and enhanced MAGE-A3-specific CTL cytotoxicity against NSCLC.
Assuntos
Calreticulina/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Células Dendríticas/imunologia , Neoplasias Pulmonares/imunologia , Linfócitos T Citotóxicos/imunologia , Adjuvantes Imunológicos/farmacologia , Adulto , Apresentação de Antígeno/imunologia , Antígenos de Neoplasias/imunologia , Western Blotting , Diferenciação Celular/imunologia , Linhagem Celular Tumoral , Ensaio de Imunoadsorção Enzimática , ELISPOT , Feminino , Citometria de Fluxo , Humanos , Ativação Linfocitária/imunologia , Proteínas de Neoplasias/imunologia , Adulto JovemRESUMO
Ginsenoside Rh2, a triterpene saponin extracted from Panax ginseng, exhibits pharmacological activity against multiple cancers. However, the anticancer mechanism of ginsenoside Rh2 is unclear. In this study, we found that ginsenoside Rh2 effectively inhibits growth and induces apoptosis of HL-60 cells. Using microarray technology, we found that tumor necrosis factor-α (TNF-α) is clearly up-regulated. Furthermore, anti-TNF-α antibody relieved the Rh2-induced HL-60 cell apoptosis via suppression of caspase-8, caspase-9, and caspase-3 activation. In addition, TNF-α up-regulation was also observed in other Rh2-treated cancer cell lines. These results demonstrate that TNF-α plays a key role in ginsenoside Rh2-induced cell apoptosis.
Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ginsenosídeos/farmacologia , Leucemia/patologia , Caspases/metabolismo , Fase G1/efeitos dos fármacos , Células HL-60 , Humanos , Leucemia/enzimologia , Leucemia/metabolismo , Fator de Necrose Tumoral alfa/metabolismoRESUMO
WRKY proteins belong to a transcription factor (TF) family and play dynamic roles in many plant processes, including plant responses to abiotic and biotic stresses, as well as secondary metabolism. However, no WRKY gene in Panax ginseng C.A. Meyer has been reported to date. In this study, a number of WRKY unigenes from methyl jasmonate (MeJA)-treated adventitious root transcriptome of this species were identified using next-generation sequencing technology. A total of 48 promising WRKY unigenes encoding WRKY proteins were obtained by eliminating wrong and incomplete open reading frame (ORF). Phylogenetic analysis reveals 48 WRKY TFs, including 11 Group I, 36 Group II, and 1 Group III. Moreover, one MeJA-responsive unigene designated as PgWRKY1 was cloned and characterized. It contains an entire ORF of 1077 bp and encodes a polypeptide of 358 amino acid residues. The PgWRKY1 protein contains a single WRKY domain consisting of a conserved amino acid sequence motif WRKYGQK and a C2H2-type zinc-finger motif belonging to WRKY subgroup II-d. Subcellular localization of PgWRKY1-GFP fusion protein in onion and tobacco epidermis cells revealed that PgWRKY1 was exclusively present in the nucleus. Quantitative real-time polymerase chain reaction analysis demonstrated that the expression of PgWRKY1 was relatively higher in roots and lateral roots compared with leaves, stems, and seeds. Importantly, PgWRKY1 expression was significantly induced by salicylic acid, abscisic acid, and NaCl, but downregulated by MeJA treatment. These results suggested that PgWRKY1 might be a multiple stress-inducible gene responding to hormones and salt stresses.
Assuntos
Genes de Plantas , Panax/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Acetatos/farmacologia , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Ciclopentanos/farmacologia , Modelos Moleculares , Dados de Sequência Molecular , Oxilipinas/farmacologia , Panax/efeitos dos fármacos , Panax/metabolismo , Filogenia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Conformação Proteica , Homologia de Sequência de Aminoácidos , Cloreto de Sódio/farmacologia , Estresse Fisiológico , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , TranscriptomaRESUMO
Despite advances in the various treatment options for esophageal squamous cell carcinoma (ESCC), its prognosis is still very poor with a 5-year survival rate of only 14-22%. Recently, among the various therapeutic approaches, the focus has shifted to immunotherapy, specifically immunotherapy involving dendritic cells (DCs), which depends on their maturation and antigen presentation to effector immune cells. Recent studies have suggested that melanoma-associated antigen 3 (MAGE-A3) is a potential immunotherapeutic target and also a candidate for the development of an anti-tumor vaccine. Calreticulin (CALR) has been shown to support induction of DC maturation. Therefore, in this study, we overexpressed MAGE-A3 and CALR on DCs and studied their potential to generate anti-tumor immune responses. We observed that adenovirus (Ad)-infected DCs overexpressing CALR and MAGE-A3 showed enhanced expression of CD80, CD83, CD86, and HLA-DR markers. Also, these DCs secreted higher levels of interleukin (IL)-12, which induces the T helper type 1 cell (Th1) response, and a lower level of IL-10, a negative regulator of the Th1 response. Furthermore, CALR/MAGE-A3-infected DCs stimulated CD8(+) cytotoxic T lymphocytes, which in turn secreted higher levels of interferon-γ, which induced cytotoxic effects on ESCC cells expressing MAGE-A3. In conclusion, our results revealed the potential of CALR/MAGE-A3-infected DCs to elicit a MAGE-A3-specific anti-tumor immunogenic response in ESCC. This proof-of-principle study may promote the future design and development of DC-based effective immunotherapy against ESCC.
Assuntos
Antígenos de Neoplasias/imunologia , Calreticulina/imunologia , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/terapia , Células Dendríticas/imunologia , Células Dendríticas/transplante , Neoplasias Esofágicas/imunologia , Neoplasias Esofágicas/terapia , Imunoterapia Adotiva/métodos , Proteínas de Neoplasias/imunologia , Adulto , Antígenos CD/imunologia , Antígenos de Neoplasias/biossíntese , Antígenos de Neoplasias/genética , Calreticulina/sangue , Calreticulina/genética , Linhagem Celular Tumoral , Testes Imunológicos de Citotoxicidade , Carcinoma de Células Escamosas do Esôfago , Feminino , Subtipos Sorológicos de HLA-DR/imunologia , Humanos , Interferon gama/imunologia , Interleucina-10/imunologia , Interleucina-12/imunologia , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Linfócitos T Citotóxicos/imunologiaRESUMO
The Panax ginseng C.A. Meyer belonging to the Araliaceae has long been used as an herbal medicine. Although public databases are presently available for this family, no methyl jasmonate (MeJA) elicited transcriptomic information was previously reported on this species, with the exception of a few expressed sequence tags (ESTs) using the traditional Sanger method. Here, approximately 53 million clean reads of adventitious root transcriptome were separately filtered via Illumina HiSeq™2000 from two samples treated with MeJA (Pg-MeJA) and equal volumes of solvent, ethanol (Pg-Con). Jointly, a total of 71,095 all-unigenes from both samples were assembled and annotated, and based on sequence similarity search with known proteins, a total of 56,668 unigenes was obtained. Out of these annotated unigenes, 54,920 were assigned to the NCBI non-redundant protein (Nr) database, 35,448 to the Swiss-prot database, 43,051 to gene ontology (GO), and 19,986 to clusters of orthologous groups (COG). Searching in the Kyoto encyclopedia of genes and genomes (KEGG) pathway database indicated that 32,200 unigenes were mapped to 128 KEGG pathways. Moreover, we obtained several genes showing a wide range of expression levels. We also identified a total of 749 ginsenoside biosynthetic enzyme genes and 12 promising pleiotropic drug resistance (PDR) genes related to ginsenoside transport.
Assuntos
Acetatos/farmacologia , Ciclopentanos/farmacologia , Ginsenosídeos/biossíntese , Oxilipinas/farmacologia , Panax/metabolismo , Bases de Dados Genéticas , Bases de Dados de Proteínas , Regulação para Baixo/efeitos dos fármacos , Etanol/farmacologia , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Pleiotropia Genética/efeitos dos fármacos , Anotação de Sequência Molecular , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Análise de Sequência de DNA , Regulação para Cima/efeitos dos fármacosRESUMO
Increasing evidence suggests that the noncanonical IKKs play critical roles in tumor genesis and development, leading to the notion that noncanonical IKKs may be good targets for cancer therapy. Here, we demonstrate that although TBK1 is not overexpressed or constitutively activated in some tumor cells, targeting IKKi induces the activation of TBK1. Therefore, simultaneously targeting both kinases is necessary to efficiently suppress tumor cell proliferation. We show that three TBK1/IKKi dual inhibitors, which are based on a structurally rigid 2-amino-4-(3'-cyano-4'-pyrrolidine)phenyl-pyrimidine scaffold, potently inhibit cell viability in human breast, prostate and oral cancer cell lines. Treatment with these TBK1/IKKi dual inhibitors significantly impairs tumor development in xenograft and allograft mouse models. The anticancer function of these inhibitors may be partially due to their suppression of TBK1/IKKi-mediated AKT phosphorylation and VEGF expression. Most importantly, these TBK1/IKKi dual inhibitors have drug-like properties including low molecular weight, low cytochrome P450 inhibition and high metabolic stability. Therefore, our studies provide proof of concept for further drug discovery efforts that may lead to novel strategies and new therapeutics for the treatment of human cancer.
Assuntos
Quinase I-kappa B/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Pirimidinas/uso terapêutico , Animais , Apoptose , Neoplasias da Mama/tratamento farmacológico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Enzima Desubiquitinante CYLD , Feminino , Humanos , Macrófagos , Masculino , Camundongos , Camundongos Nus , Neoplasias Bucais/tratamento farmacológico , Neoplasias/metabolismo , Fosforilação/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/química , Interferência de RNA , RNA Interferente Pequeno , Proteínas Supressoras de Tumor/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Background: The most effective method and length of time for administering adjuvant immunotherapy after surgery for non-small cell lung cancer (NSCLC) are still unknown. Various clinical trials have utilized diverse strategies for adjuvant treatment. In this case, we explore the potential benefits of neoadjuvant immunotherapy combined with chemotherapy in managing locally advanced lung squamous carcinoma, which often poses challenges for treatment. This multimodal approach aims to downstage tumors and optimize surgical outcomes. Case Description: Following a diagnosis of stage IIIB lung cancer, the patient underwent three cycles of neoadjuvant therapy using sintilimab, Abraxane, and Lobaplatin, resulting in a significant 45% reduction in tumor size. Subsequently, a right lower lobe lobectomy and systematic lymphadenectomy were performed using a uniportal video-assisted thoracic surgery (VATS) approach. Postoperative analysis revealed negative lymph nodes, with only a 5-mm residual tumor in the tumor bed, downstaging the cancer to IA1. Remarkably, the patient experienced a smooth recovery without any postoperative complications. One cycle of adjuvant therapy was administered following the operation to further support the patient's recovery and minimize the risk of disease recurrence. This comprehensive treatment approach underscores the importance of neoadjuvant therapy in optimizing surgical outcomes and improving long-term prognosis for patients with locally advanced lung cancer. Conclusions: For patients with stage III locally advanced lung squamous carcinoma, the combination of Sintilimab and Platinum-based drugs can be used as a neoadjuvant therapy which can reduce the difficulty of the operation.
RESUMO
A 60-year-old woman was admitted to our department for a left upper lobe and left lower lobe ground glass nodules. Three-dimensional computed tomography bronchography and angiography showed an aberrant anterior ascending segmental pulmonary artery (A3aii) branching from the lingular artery. We performed left upper division segmentectomy and left lower superior segmentectomy for ground glass opacity lesions, and the A3aii variation artery was safely dissected. The patient received an uneventful recovery, and the final pathologic diagnosis was early-stage multiple primary lung cancers. The A3aii branching of the lingular artery was extremely rare. Preoperative three-dimensional computed tomography bronchography and angiography was important to provide accurate vessel variation information and achieve accurate and safe segmentectomy procedure.
Assuntos
Cardiopatias Congênitas , Neoplasias Pulmonares , Angiografia , Feminino , Humanos , Pulmão/irrigação sanguínea , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/cirurgia , Pessoa de Meia-Idade , Artéria Pulmonar/diagnóstico por imagem , Artéria Pulmonar/cirurgia , Tomografia Computadorizada por Raios X/métodosRESUMO
Background: Anatomical segmentectomy has become more and more universal in thoracic surgery because of the increasing detection of pulmonary nodules with ground-glass opacity (GGO), most of which proved early staged non-small cell lung cancer (NSCLC) postoperative. With the advantage of preservation of normal lung tissues, segmentectomy may be performed by surgeons when computed tomography (CT) scan shows pure GGO or multiple GGOs appearing. Especially when the patients with poor cardiopulmonary function or severe comorbidities or in the circumstance of bilateral pulmonary GGOs, segmentectomy can provide opportunities to radically resect all lesions. With the development of minimally invasive surgery technology, uniportal video-assisted thoracoscopic surgery (VATS) has become the regular operative route in many medical centers because it can provide less access trauma, less stress response, less pain, shorter hospital stays, and a lower postoperative complication rate and corresponds well with the idea of "minimally invasive". However, all of the procedures must be performed in one tiny portal, so uniportal VATS anatomical segmentectomy not only needs the skill and patience of surgeons but the effective cooperation of assistants, nurses and anesthetists, and plenty of details must be paid special attention. Case Description: Here we present a video of a patient undergoing S1 segmentectomy of right upper lobectomy (RUL) under uniportal VATS. The chief complaints of the patients was that two pure GGOs in the bilateral upper lobe were found by physical examination for 26 months and he had no symptoms. We performed S1 segmentectomy of RUL under uniportal first time and performed trisegmentectomy of left upper lobectomy (LUL) 3 months later. With routinely follow-up, no evidence of relapse and metastasis disease was found. Conclusions: We think anatomical segmentectomy under uniportal VATS can be a feasible and safe procedure that reduces trauma and has equivalent oncology outcomes to lobectomy in early-stage lung cancer but need a more experienced medical center to perform. Keywords: Uniportal video-assisted thoracoscopic surgery (uniportal VATS); segmentectomy; non-small cell lung cancer (NSCLC); case report.
RESUMO
Breast cancer is one of the most prevalent malignancies with poor prognosis. Inhibition of angiogenesis is becoming a valid and evident therapeutic strategy to treat cancer. Recent studies uncovered the antiangiogenic activity of ZLM-7 (a combretastain A-4 derivative), but the regulatory mechanism is unclear. ZLM-7 treatment was applied in estrogen receptor-positive cell MCF-7, triple-negative breast cancer cell MDA-MB-231 and xenograft models. Transfections were conducted to overexpress or knockdown targeted genes. The gene and protein expressions were measured by qPCR and Western blotting assay, respectively. Cell proliferation and apoptosis were evaluated using the CCK8 method, clone formation assay and flow cytometry. We found that ZLM-7 upregulated 14-3-3 sigma expression but downregulated MDM2 expression in breast cancer cells. ZLM-7 delayed cell proliferation, promoted apoptosis and blocked cell-cycle progression in human breast cancer cells in vitro, while those effects were abolished by 14-3-3 sigma knockdown; overexpression of 14-3-3 sigma reproduced the actions of ZLM-7 on the cell cycle, which could be reversed by MDM2 overexpression. In xenograft models, ZLM-7 treatment significantly inhibited tumor growth while the inhibition was attenuated when 14-3-3 sigma was silenced. Collectively, ZLM-7 could inhibit MDM2 via upregulating 14-3-3 sigma expression, thereby blocking the breast cancer progression.
RESUMO
Argininosuccinate synthase (ASS1) is a ubiquitous enzyme in mammals that catalyzes the formation of argininosuccinate from citrulline and aspartate. ASS1 genetic deficiency in patients leads to an autosomal recessive urea cycle disorder citrullinemia, while its somatic silence or down-regulation is very common in various human cancers. Here, we show that ASS1 functions as a tumor suppressor in breast cancer, and the pesticide spinosyn A (SPA) and its derivative LM-2I suppress breast tumor cell proliferation and growth by binding to and activating ASS1. The C13-C14 double bond in SPA and LM-2I while the Cys97 (C97) site in ASS1 are critical for the interaction between ASS1 and SPA or LM-2I. SPA and LM-2I treatment results in significant enhancement of ASS1 enzymatic activity in breast cancer cells, particularly in those cancer cells with low ASS1 expression, leading to reduced pyrimidine synthesis and consequently the inhibition of cancer cell proliferation. Thus, our results establish spinosyn A and its derivative LM-2I as potent ASS1 enzymatic activator and tumor inhibitor, which provides a therapeutic avenue for tumors with low ASS1 expression and for those non-tumor diseases caused by down-regulation of ASS1.
Assuntos
Argininossuccinato Sintase/metabolismo , Neoplasias da Mama/tratamento farmacológico , Citrulinemia/tratamento farmacológico , Ativadores de Enzimas/farmacologia , Macrolídeos/farmacologia , Proteínas Supressoras de Tumor/agonistas , Adulto , Idoso , Animais , Argininossuccinato Sintase/genética , Argininossuccinato Sintase/isolamento & purificação , Ácido Aspártico/metabolismo , Mama/patologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citrulina/metabolismo , Citrulinemia/genética , Ativadores de Enzimas/uso terapêutico , Feminino , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Macrolídeos/uso terapêutico , Metabolômica , Camundongos , Pessoa de Meia-Idade , Simulação de Acoplamento Molecular , Mutação , Ligação Proteica , Pirimidinas/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
20(S)Protopanaxadiol (PPD) is an active ginseng metabolite and is the final form of protopanaxadiol saponins metabolized by human intestinal microflora. The neuroprotective effects and mechanisms underlying PPD on neural stem cells (NSCs) are not completely understood. The aim of the present study was to assess the effects of PPD on the proliferation and differentiation of neural stem cells. In the present study, following treatment with different concentrations of PPD for 24 h, the percentage of BrdUpositive cells decreased significantly with increasing concentrations of PPD. Moreover, flow cytometric analysis results indicated that PPD treatment increased the proportion of cells in the G0/G1 and G2/M phase and decreased the proportion of cells in the S phase. The activation of autophagy, determined by an increased number of autophagic vacuoles and light chain 3 lipidation, was associated with an increase in the expression of the neuronal marker tubulinß3 following PPD treatment. PPD also partially rescued NSCs from the inhibitory effects of the autophagic inhibitor wortmannin, suggesting that the effect of PPD on NSC differentiation was associated with autophagy. Collectively, the results indicated that PPD promoted the transition of NSCs from a state of proliferation to differentiation through the induction of autophagy and cell cycle arrest. Therefore, the present study may provide a basis for the development of regenerative therapies based on ginsenoside, an approved and safe drug.
Assuntos
Autofagia/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Sapogeninas/farmacologia , Animais , Células Cultivadas , Ginsenosídeos/química , Ginsenosídeos/farmacologia , Células-Tronco Neurais/citologia , Panax/química , Ratos Sprague-Dawley , Sapogeninas/químicaRESUMO
OBJECTIVE: The purpose of this study is to investigate the effects of different drying methods on the physical properties and drug delivery of chitosan microspheres. METHODS: Three types of drying methods were utilized, including air drying and freeze drying after freezing at -20 â (slow cooling) and at -80 â (fast cooling). The physical properties of microspheres were characterized. Utilizing bovine serum albumin (BSA) as the model drug, the in-vitro release behaviors of drug-loaded beads were investigated. RESULTS: By comparing the physical properties of the different drying methods, the microspheres' diameters, porosities, and surface area were observed to increase successively from air drying and slow cooling to fast cooling, whereas the pore size and the swelling and degradation rates varied. The drug-loading experiments revealed that the loading capacity of air-dried microspheres was the lowest and the release rate was the slowest. Although the loading capacity of fast cooling microspheres was high, an obvious burst release was observed. The loading capacity of slow cooling microspheres was similar to that of the fast cooling microspheres and the loaded BSA can be released continuously. CONCLUSIONS: The results indicate that different drying methods can affect the physical properties of chitosan microspheres, which further influence drug loading and release.
Assuntos
Quitosana , Portadores de Fármacos , Composição de Medicamentos , Microesferas , Tamanho da PartículaRESUMO
6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3 (PFKFB3), an enzyme producing fructose 2, 6-bisphosphate (F-2, 6-BP), serves as a switch to activate phosphofructokinase-1, and is a critical enzyme for endothelial glycolysis, mediating circadian control of carcinogenesis. Also, tumor-associated macrophages (TAMs) play an important role in the progression and prognosis of numerous cancers. However, the role and clinical significance of PFKFB3 and TAMs in oral squamous cell carcinoma (OSCC) have not been elucidated. The present study was designed to investigate the correlation between PFKFB3 expression, CD163+ TAMs infiltration and tumor angiogenesis in OSCC by tissue microarray. Tissue microarrays containing 117 OSCC specimens and 56 matched paracarcinoma tissues were studied by immunohistochemistry. The expression levels of PFKFB3, CD163 and CD31 were significantly increased in OSCC specimens as compared with normal oral mucosa (P<0.05), and PFKFB was signifcantly correlated with tumor differentiation and tumor size (P<0.05), and CD163 was significantly correlated with areca nut chewing habit among OSCC tissues (P<0.05). Furthermore, Pearson's correlation analysis revealed that PFKFB3 was signifcantly correlated with both CD163 and CD31 (P<0.05), meanwhile CD163 was signifcantly correlated with CD31 (P<0.001), suggesting PFKFB3 may promote angiogenesis in tumor progression and metastases by regulating CD163+ TAMs infiltration in OSCC.