Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 17(40): e2102987, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34431627

RESUMO

This work reports the design of a wavelength sensor composed of two identical perovskite (FA0.85 Cs0.15 PbI3 ) photodetectors (PDs) that are capable of discriminating incident wavelength in a quantitative way. Due to strong wavelength-dependent absorption coefficient, the penetration depth of the photons in the FA0.85 Cs0.15 PbI3 nanofilms increases with the increasing wavelength, leading to a gradual decrease of photo-generated current for PD1, but an increase of photocurrent in PD2, according to the theoretical simulation of Technology Computer Aided Design. This special evolution of photo-generated current as a function of wavelength facilitates the quantitative determination of the wavelength since the current ratio of both PDs monotonously decreases with the increase of wavelength from 265 to 810 nm. The average absolute error and the average relative error are estimated to be 7.6 nm and 1.68%, respectively, which are much better than other semiconductors materials-based wavelength sensors previously reported. It is believed that the present perovskite film-based wavelength sensor will have potential application in the future color/spectrum optoelectronic devices.

2.
J Phys Chem Lett ; 13(12): 2668-2673, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35302372

RESUMO

In this work, we report on the synthesis of InSe nanobelts through a catalyst-free chemical vapor deposition (CVD) growth approach. A remarkable blue shift of the peak photoresponse was observed when the thickness of the InSe nanobelt decreases from 562 to 165 nm. Silvaco Technology Computer Aided Design (TCAD) simulation reveals that such a shift in spectral response should be ascribed to the wavelength-dependent absorption coefficient of InSe, for which incident light with shorter wavelengths will be absorbed near the surface, while light with longer wavelengths will have a greater penetration depth, leading to a red shift of the absorption edge for thicker nanobelt devices. Considering the above theory, three kinds of photodetectors sensitive to blue (450 nm), green (530 nm), and red (660 nm) incident light were achieved by tailoring the thickness of the nanobelts, which can enable the spectral reconstruction of a purple "H" pattern, suggesting the potential application of 2D layered semiconductors in full-color imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA