Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Macromol Rapid Commun ; 45(8): e2300683, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38237945

RESUMO

Wound healing in movable parts, including the joints and neck, remains a critical challenge due to frequent motions and poor flexibility of dressings, which may lead to mismatching of mechanical properties and poor fitting between dressings and wounds; thus, increasing the risk of bacterial infection. This study proposes a sprayable zwitterionic antibacterial hydrogel with outstanding flexibility and desirable adhesion. This hydrogel precursor is fabricated by combining zwitterionic sulfobetaine methacrylate (SBMA) with poly(sulfobetaine methacrylate-co-dopamine methacrylamide)-modified silver nanoparticles (PSBDA@AgNPs) through robust electrostatic interactions. About 150 s of exposure to UV light, the SBMA monomer polymerizes to form PSB chains entangled with PSBDA@AgNPs, transformed into a stable and adhesion PSB-PSB@Ag hydrogel at the wound site. The resulting hydrogel has adhesive strength (15-38 kPa), large tensile strain (>400%), suitable shape adaptation, and excellent mechanical resilience. Moreover, the hydrogel displays pH-responsive behavior; the acidic microenvironment at the infected wound sites prompts the hydrogel to rapidly release AgNPs and kill bacteria. Further, the healing effect of the hydrogel is demonstrated on the rat neck skin wound, showing improved wound closing rate due to reduced inflammation and enhanced angiogenesis. Overall, the sprayable zwitterionic antibacterial hydrogel has significant potential to promote joint skin wound healing.


Assuntos
Antibacterianos , Hidrogéis , Nanopartículas Metálicas , Metacrilatos , Prata , Cicatrização , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Prata/química , Prata/farmacologia , Ratos , Nanopartículas Metálicas/química , Metacrilatos/química , Metacrilatos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana
2.
Anim Genet ; 55(3): 471-474, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38618678

RESUMO

This work aimed to identify markers and candidate genes underlying porcine digestive traits. In total, 331 pigs were genotyped by 80 K Chip data or 50 K Chip data. For apparent neutral detergent fiber digestibility, a total of 19 and 21 candidate single nucleotide polymorphisms (SNP) were respectively identified using a genome-wide efficient mixed-model association algorithm and linkage-disequilibrium adjusted kinship. Among them, three quantitative trait locus (QTL) regions were identified. For apparent acid detergent fiber digestibility, a total of 16 and 17 SNPs were identified by these two methods, respectively. Of these, three QTL regions were also identified. Moreover, two candidate genes (MST1 and LATS1), which are functionally related to intestinal homeostasis and health, were detected near these significant SNPs. Taken together, our results could provide a basis for deeper research on digestive traits in pigs.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sus scrofa , Animais , Sus scrofa/genética , Estudo de Associação Genômica Ampla/veterinária , Digestão/genética , Desequilíbrio de Ligação , Genótipo
3.
Biomacromolecules ; 24(11): 5313-5327, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37725632

RESUMO

Developing a hemostatic sponge that can effectively control bleeding from visceral injuries while guiding in situ tissue regeneration in incompressible wounds remains a challenge. Most of the existing hemostatic sponges degrade slowly, are relatively single-functioning, and cannot cope with complex environments. Herein, a biodegradable rapidly hemostatic sponge (GPZ) was created by dual-dynamic-bond cross-linking among Zn2+, protocatechualdehyde (PA)-containing catechol and aldehyde groups, and gelatin. GPZ had a uniformly distributed interconnected pore structure with excellent fluid absorption. It could effectively absorb the oozing blood and increase the blood concentration while stimulating platelet activation and accelerating blood coagulation. Compared to commercial hemostats, GPZ treatment significantly accelerated hemostasis in the rat liver defect model (∼0.33 min, ≥50% reduction in the hemostatic time) and in the rabbit liver defect model (∼1.02 min, ≥60% reduction in the hemostatic time). Additionally, GPZ had excellent antibacterial and antioxidant properties that effectively protected the wound from infection and excessive inflammation. In the liver regeneration model, GPZ significantly increased the rate of hepatic tissue repair and promoted rapid functional recovery without complications and adverse reactions. Overall, we designed a simple and effective biodegradable rapid hemostatic sponge with good clinical translational potential for treating lethal incompressible bleeding and promoting wound healing.


Assuntos
Gelatina , Hemostáticos , Ratos , Animais , Coelhos , Gelatina/farmacologia , Hemostasia , Hemostáticos/farmacologia , Hemostáticos/química , Cicatrização , Hemorragia/tratamento farmacológico , Fígado/lesões
4.
Langmuir ; 38(41): 12539-12550, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36213955

RESUMO

Wettability alteration of the shale surface is a potential strategy to address wellbore instability issues arising from shale hydration. In this study, we have explored an oil-in-water (o/w) nanoemulsion, in which soluble silicate (lithium silicate and potassium methyl silicate) as the aqueous phase and organosilanes (3-methacryloxypropyltrimethoxysilane (KH570) and n-octyltriethoxysilane (n-OTES)) as the oil phase, as a shale inhibitor via forming a hydrophobic "artificial borehole shield" in situ on shale surfaces to maintain wellbore stability in high-temperature drilling operations. The shale dispersion test showed the highest shale recovery of nanoemulsion was up to 106.4% compared to that of water (20%), and recovered shale cuttings remained at the original integrity after hot rolling at 180 °C, indicating superior inhibition performance and resistance to elevated temperatures. Moreover, recovered shale cuttings manifested water repellency upon reimmersion in water, ascribed to the hydrophobic film, preventing water from permeating into the shale. The results of the contact angle measurement elucidated that the film wettability, from hydrophilic to superhydrophobic (ranging from 9.6-154°), can be achieved by altering the n-OTES-to-KH570 weight ratio from 0.2 to 2.25, and the film with the highest hydrophobicity (154°) and the lowest surface energy (3.17 mJ·m-2) can be obtained at a ratio of 1.3. Scanning electron microscopy images demonstrated that the superhydrophobic film was composed of tightly stacked reticulate nanofilaments with a diameter of 7-17 nm and several micrometers in length and overlapped well-distributed nanospheres with a diameter of 30 nm. X-ray diffraction and Fourier transform infrared spectroscopy confirmed the film was crystalline silica grafted with long-chain alkylsiloxane. It is assumed that the unique micronanostructure combined with the siloxane modification contributed to the hydrophobicity. Consequently, this study provides a potential alternative solution for wellbore stabilization in deep well drilling engineering by employing nanoemulsion as a shale hydration inhibitor via forming a protective film with controllable wettability. Furthermore, it can be conferred a practical application due to easily available, less hazardous, and cost-effective materials.

5.
Biomacromolecules ; 22(8): 3510-3521, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34288655

RESUMO

Hydrophobic acrylic intraocular lenses (IOLs) are widely used in cataract treatment for posterior capsule opacification (PCO) prophylaxis. However, undesired glistening and postoperative endophthalmitis are two major potential risks. Hence, a series of poly(2-phenoxyethyl methacrylate-co-2-phenoxyethyl acrylate-co-2-ethylhexyl methacrylate) (PPPE) acrylic IOL materials were synthesized for "glistening-free" optimization. The selected PPPE with 2% 2-ethylhexyl methacrylate showed excellent optical, foldable, and thermomechanical properties. The anterior surface of PPPE was coated with polydopamine followed by gentamycin conjugation (PDA/GS). It inhibited bacterial adhesion by 74% and decreased the biofilm thickness by 87%. In inflammatory mimicking conditions, bacterial proliferation was restrained, with acidic-dependent GS release behavior. The surface of PPPE toward the posterior capsule remained hydrophobic. It was conducive to human lens epithelial cell adhesion, collagen IV and fibronectin adsorption, and the following "sealed sandwich structure" formation. In summary, the PPPE with a dual-side heterogeneous surface displayed good application prospects in postoperative endophthalmitis and PCO prevention.


Assuntos
Opacificação da Cápsula , Endoftalmite , Cápsula do Cristalino , Lentes Intraoculares , Materiais Biocompatíveis , Endoftalmite/prevenção & controle , Humanos , Complicações Pós-Operatórias/prevenção & controle , Desenho de Prótese
6.
J Med Internet Res ; 23(6): e25247, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34100770

RESUMO

BACKGROUND: Dysphonia influences the quality of life by interfering with communication. However, a laryngoscopic examination is expensive and not readily accessible in primary care units. Experienced laryngologists are required to achieve an accurate diagnosis. OBJECTIVE: This study sought to detect various vocal fold diseases through pathological voice recognition using artificial intelligence. METHODS: We collected 189 normal voice samples and 552 samples of individuals with voice disorders, including vocal atrophy (n=224), unilateral vocal paralysis (n=50), organic vocal fold lesions (n=248), and adductor spasmodic dysphonia (n=30). The 741 samples were divided into 2 sets: 593 samples as the training set and 148 samples as the testing set. A convolutional neural network approach was applied to train the model, and findings were compared with those of human specialists. RESULTS: The convolutional neural network model achieved a sensitivity of 0.66, a specificity of 0.91, and an overall accuracy of 66.9% for distinguishing normal voice, vocal atrophy, unilateral vocal paralysis, organic vocal fold lesions, and adductor spasmodic dysphonia. Compared with the accuracy of human specialists, the overall accuracy rates were 60.1% and 56.1% for the 2 laryngologists and 51.4% and 43.2% for the 2 general ear, nose, and throat doctors. CONCLUSIONS: Voice alone could be used for common vocal fold disease recognition through a deep learning approach after training with our Mandarin pathological voice database. This approach involving artificial intelligence could be clinically useful for screening general vocal fold disease using the voice. The approach includes a quick survey and a general health examination. It can be applied during telemedicine in areas with primary care units lacking laryngoscopic abilities. It could support physicians when prescreening cases by allowing for invasive examinations to be performed only for cases involving problems with automatic recognition or listening and for professional analyses of other clinical examination results that reveal doubts about the presence of pathologies.


Assuntos
Aprendizado Profundo , Prega Vocal , Inteligência Artificial , Humanos , Qualidade de Vida , Reconhecimento de Voz
7.
Med Sci Monit ; 25: 4923-4932, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31268042

RESUMO

Thyroid-associated ophthalmopathy is the commonest orbital disease in adults. However, shortcomings still exist in treatments. The aim of this study was to identify the efficacy and potential mechanism of gypenosides in the treatment of thyroid-associated ophthalmopathy. The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform was screened for active compounds of gypenosides, and targets were predicted using Swiss Target Prediction. The targets of thyroid-associated ophthalmopathy were obtained from Online Mendelian Inheritance in Man, Comparative Toxicogenomic Database and GeneCards Human gene database. Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome Pathways were determined based on the common targets. Protein-protein interaction (PPI) network was constructed to further understand of relationship among target genes, compounds and proteins. Molecular docking was performed to investigate the binding ability between gypenosides and hub genes. A total of 70 targets for gypenosides and 804 targets for thyroid-associated ophthalmopathy were obtained with 8 common targets identified. GO analysis and KEGG pathway analysis revealed that the hub genes were enriched in JAK-STAT, while Reactome pathways analysis indicated genes enriched in interleukin pathways. PPI network showed STAT1, STAT3, and STAT4 were at the center. Additionally, molecular docking indicated that STAT1 and STAT3 display good binding forces with gypenosides. This study indicates that target genes mainly enriched in JAK-STAT signaling pathway, particularly in STATs, which can be combined with gypenosides. This may suggest that gypenosides have curative effect on thyroid-associated ophthalmopathy via the JAK-STAT pathway.


Assuntos
Biologia Computacional/métodos , Oftalmopatia de Graves/tratamento farmacológico , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Ontologia Genética , Redes Reguladoras de Genes/genética , Oftalmopatia de Graves/genética , Oftalmopatia de Graves/metabolismo , Gynostemma/metabolismo , Humanos , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular/métodos , Extratos Vegetais/metabolismo , Extratos Vegetais/uso terapêutico , Mapas de Interação de Proteínas/genética , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/genética
8.
Med Sci Monit ; 20: 639-43, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24743332

RESUMO

Graves' ophthalmopathy is an inflammatory autoimmune disease of the orbit, characterized by inflammation and proliferation of the orbital tissue caused by CD4+T cells and orbital fibroblasts. Despite recent substantial findings regarding its cellular and molecular foundations, the pathogenesis of Graves' ophthalmopathy remains unclear. Accumulating data suggest that microRNAs play important roles in the pathophysiology of autoimmunity and proliferation. Specifically, microRNA-155 (miR-155) can promote autoimmune inflammation by enhancing inflammatory T cell development. In contrast to miR-155, microRNA-146a (miR-146a) can inhibit the immune response by suppressing T cell activation. Furthermore, miR-155 and miR-146a are involved in cell proliferation, differentiation, and many other life processes. Thus, miR-155 and miR-146a, with opposite impacts on inflammatory responses carried out by T lymphocytes, appear to have multiple targets in the pathogenesis of Graves' ophthalmopathy. Our previous work showed that the expression of miR-146a was significantly decreased in peripheral blood mononuclear cells from Graves' ophthalmopathy patients compared with normal subjects. Accordingly, we proposed that the expression of miR-155 increased and the expression of miR-146a decreased in the target cells (CD4+T cells and orbital fibroblasts), thus promoting ocular inflammation and proliferation in Graves' ophthalmopathy. The proposed hypothesis warrants further investigation of the function of the differentially expressed microRNAs, which may shed new light on the pathogenesis of Graves' ophthalmopathy and lead to new strategies for its management.


Assuntos
Olho/patologia , Oftalmopatia de Graves/genética , Oftalmopatia de Graves/patologia , Inflamação/genética , MicroRNAs/metabolismo , Proliferação de Células , Oftalmopatia de Graves/complicações , Oftalmopatia de Graves/imunologia , Humanos , Imunomodulação , Inflamação/complicações , Inflamação/patologia , MicroRNAs/genética , Modelos Biológicos
9.
Interdiscip Sci ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38424397

RESUMO

Sarcomas are malignant tumors from mesenchymal tissue and are characterized by their complexity and diversity. The high recurrence rate making it important to understand the mechanisms behind their recurrence and to develop personalized treatments and drugs. However, previous studies on the association patterns of multi-modal data on sarcoma recurrence have overlooked the fact that genes do not act independently, but rather function within signaling pathways. Therefore, this study collected 290 whole solid images, 869 gene and 1387 pathway data of over 260 sarcoma samples from UCSC and TCGA to identify the association patterns of gene-pathway-cell related to sarcoma recurrences. Meanwhile, considering that most multi-modal data fusion methods based on the joint non-negative matrix factorization (NMF) model led to poor experimental repeatability due to random initialization of factorization parameters, the study proposed the singular value decomposition (SVD)-driven joint NMF model by applying the SVD method to calculate initialized weight and coefficient matrices to achieve the reproducibility of the results. The results of the experimental comparison indicated that the SVD algorithm enhances the performance of the joint NMF algorithm. Furthermore, the representative module indicated a significant relationship between genes in pathways and image features. Multi-level analysis provided valuable insights into the connections between biological processes, cellular features, and sarcoma recurrence. In addition, potential biomarkers were uncovered, while various mechanisms of sarcoma recurrence were identified from an imaging genetic perspective. Overall, the SVD-NMF model affords a novel perspective on combining multi-omics data to explore the association related to sarcoma recurrence.

10.
Biomater Sci ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058335

RESUMO

Hydrophilic antifouling coatings based on zwitterionic polymers have been widely applied for the surface modification of bone implants to combat biofilm formation and reduce the likelihood of implant-related infections. However, their long-term effectiveness is significantly limited by the lack of effective and precise antibacterial activity. Here, a pH-responsive smart zwitterionic antibacterial coating (PSB/GS coating) was designed and robustly fabricated onto titanium-base bone implants by using a facile two-step method. First, dopamine (DA) and a poly(sulfobetaine methacrylate-co-dopamine methacrylamide) (PSBDA) copolymer were deposited on implants via mussel-inspired surface chemistry, resulting in a hydrophilic base coating with abundant catechol residues. Next, an amino-rich antibiotic, gentamicin sulfate (GS), was covalently linked to the coating through the formation of acid-sensitive Schiff base bonds between the amine groups of GS and the catechol residues present in both the zwitterionic polymer and the DA component. During the initial implantation period, the hydrophilic zwitterionic polymers demonstrated the desired anti-fouling properties that could effectively reduce protein and bacterial adhesion by over 90%. With time, the bacterial proliferation led to a decrease in the microenvironment pH value, resulting in the hydrolysis of the acid-sensitive Schiff base bonds, thereby releasing GS on demand and effectively enhancing the anti-biofilm properties of coatings. Benefiting from this synergistic antifouling and smart antibacterial activities, the PSB/GS coating exerted an excellent anti-infective activity in both in vivo preoperative and postoperative infection rat models. This proposed facile yet effective coating strategy is expected to provide a promising solution to combat bone implant-related infections.

11.
Biomed Mater ; 19(2)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38290161

RESUMO

Clinically, tumor removal surgery leaves irregularly shaped wounds that are susceptible to bacterial infection and further lead to excessive inflammation. Injectable hydrogel dressings with antimicrobial and anti-inflammatory properties have been recognized as an effective strategy to care for postoperative tumor wounds and prevent recurrence in recent years. In this work, we constructed a hydrogel network by ionic bonding interactions between quaternized chitosan (QCS) and epigallocatechin gallate (EGCG)-Zn complexes which were coordinated by EGCG and zinc ions. Because of the synergistic effect of QCS and EGCG-Zn, the hydrogel exhibited outstanding antimicrobial capacity (>99.9% inhibition), which could prevent infections caused byEscherichia coli and Staphylococcus aureus. In addition, the hydrogel was able to inhibit the growth of mice breast cancer cells (56.81% survival rate within 72 h) and reduce inflammation, which was attributed to the sustained release of EGCG. The results showed that the hydrogel was effective in inhibiting tumor recurrence and accelerating wound closure when applied to the postoperative tumor wounds. This study provided a simple and reliable strategy for postoperative tumor wound care using antimicrobial and anti-inflammatory injectable dressings, confirming their great potential in the field of postoperative wound dressings.


Assuntos
Anti-Infecciosos , Quitosana , Neoplasias , Animais , Camundongos , Hidrogéis , Anti-Inflamatórios , Inflamação , Antibacterianos
12.
J Mater Chem B ; 11(33): 8020-8032, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37530181

RESUMO

Antifouling coatings based on zwitterionic polymers have been widely applied for surface modification of interventional blood-contacting devices to combat thrombosis and infection. However, the weak adhesion stability of the zwitterionic coating to the device surface is still the key challenge. In this work, biocompatible mixed-charge zwitterionic polyurethane (MPU) polymers, that bear equal amounts of cationic quaternary amine groups and anionic carboxyl groups, were developed and further uniformly dip-coated onto a thermoplastic polyurethane (TPU) substrate with a commercial aliphatic isocyanate cross-linker (AIC). During the curing process, AIC not only crosslinks MPU chains into a polymer network but also reacts with hydroxyl groups of TPU to interlink the polymer network to the substrate, resulting in a cross-linking reinforced MPU coating (CMPU) with excellent mechanical robustness and adhesion strength. Taking advantage of the mixed-charge feature, the final zwitterionic CMPU coating exhibits both excellent antifouling and antibacterial activities against protein adsorption and bacterial growth, respectively, which is beneficial for effectively inhibiting the occurrence of in vivo infection. Moreover, anticoagulation studies show that CMPU-coated TPU catheters can also prevent the formation of blood clots in ex vivo rabbit blood circuits without anticoagulants. Hence, the designed CMPU coating has immense potential to address thrombosis and infection for interventional blood-contacting devices.


Assuntos
Anticoagulantes , Trombose , Animais , Coelhos , Poliuretanos/farmacologia , Staphylococcus aureus , Polímeros , Antibacterianos/farmacologia , Trombose/tratamento farmacológico , Trombose/prevenção & controle
13.
Medicine (Baltimore) ; 102(35): e34778, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37657062

RESUMO

Thyroid-associated ophthalmopathy (TAO) is an autoimmune disease involving the ocular tissues that may require strabismus surgery treatment. Presently, little is known about the impact of strabismus surgery on the quality of life of such patients. Consequently, the aim of the present study was to explore the effect of strabismus surgery on the quality of life of strabismus patients with quiescent TAO. This was a prospective case-series study. Strabismus patients with TAO who were admitted to the First Affiliated Hospital of Guangxi Medical University for strabismus surgery from October 2011 to April 2016 were included in this study. The included patients were asked to complete the Graves' ophthalmopathy quality of life questionnaire (GO-QOL) before strabismus surgery and 6 weeks after the surgery, respectively. Preoperative and postoperative GO-QOL scores were compared using the paired samples t-test. The correlation between strabismus surgery and the quality of life was analyzed using Spearman correlation analysis. In total, 23 patients, with a mean age of 49.04 years old, were included in the study. Compared to the preoperative GO-QOL scores, the postoperative scores of these patients for visual function (43.04 vs 73.50, P < .001) and psychosocial function (40.13 vs 72.93, P < .001) were both significantly increased. The greater the preoperative angle of misalignment of the eyes, the worse the psychosocial function (r = -0.433, P = .039). Strabismus surgery can significantly improve the quality of life of strabismus patients with quiescent TAO.


Assuntos
Oftalmopatia de Graves , Estrabismo , Humanos , Pessoa de Meia-Idade , Oftalmopatia de Graves/complicações , Oftalmopatia de Graves/cirurgia , Qualidade de Vida , China , Estrabismo/cirurgia , Olho
14.
Curr Med Sci ; 43(1): 123-129, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36821039

RESUMO

OBJECTIVE: This study aimed to explore the effects of tea polyphenols (TP) on inflammation of orbital fibroblasts in Graves' ophthalmopathy (GO) and to provide new ideas for GO treatment. METHODS: Primary orbital fibroblasts were extracted from orbital adipose/connective tissues of patients with and without GO. Real-time quantitative PCR (RT-qPCR) was used to detect the expression of interleukin (IL)-6, IL-1ß, and monocyte chemotactic protein (MCP)-1 in non-GO and GO orbital fibroblasts. The CCK-8 assay was used to determine the appropriate concentration of TP for subsequent experiments. RT-qPCR and enzyme-linked immunosorbent assay (ELISA) were performed to investigate the effects of TP on lipopolysaccharide (LPS)-induced production of inflammatory cytokines. Nuclear factor-κB (NF-κB) expression was measured using Western blotting analysis. NOD-like receptor 3 (NLRP3) expression was detected using both Western blotting analysis and immunofluorescence staining. RESULTS: The mRNA levels of IL-6, IL-1ß, and MCP-1 in GO orbital fibroblasts were significantly higher than those in non-GO cells. TP treatment significantly inhibited LPS-induced production of inflammatory factors, including IL-6, IL-1ß, and MCP-1. TP also inhibited the expression levels of NF-κB and NLRP3. Inflammation in the GO orbital fibroblasts was higher than that in non-GO cells. TP inhibited the production of inflammatory cytokines in GO orbital fibroblasts in vitro through the NF-κB/NLRP3 pathway. CONCLUSION: These findings suggest that TP may have a potential role in GO treatment.


Assuntos
Oftalmopatia de Graves , NF-kappa B , Humanos , Citocinas/metabolismo , Fibroblastos , Oftalmopatia de Graves/genética , Oftalmopatia de Graves/metabolismo , Inflamação/genética , Interleucina-6/genética , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Chá/metabolismo
15.
Colloids Surf B Biointerfaces ; 222: 113093, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36542949

RESUMO

After cataract surgery, to prevent possible postoperative endophthalmitis (POE) caused by attached pathogenic bacteria onto the surface of implanted intraocular lens (IOL), various antibiotic-loaded IOLs have been proposed and widely studied to inhibit bacterial infection. However, most of these developed antibiotic-loaded IOLs still suffer from shortcomings such as insufficient drug loading, short release time, poor biocompatibility, and risk of secondary infection. Herein, we propose a zwitterionic and high-drug loading coating for surface modification of commercial hydrophobic IOL with both antifouling and antibacterial properties to effectively prevent POE. In this strategy, zwitterionic poly(carboxylbetaine-co-dopamine methacrylamide) copolymers (pCBDA) and dopamine (DA) were first robustly co-deposited onto IOL surface via facile mussel-inspired chemistry, resulting in a hydrophilic coating (defined as PCB) without sacrificing the high light transmittance of the native IOL. Subsequently, amikacin (AMK), an amine-rich antibiotic was reversibly conjugated onto the coating through the acid-sensitive Schiff base bonds formed by the reaction between amino and catechol groups, with high-drug payload over ∼35.5 µg per IOL and 30 days of sustained drug release under weak acid environment. Benefiting from the antifouling property of zwitterionic pCBDA copolymers, the intraocularly implanted PCB/AMK-coated IOL could effectively resist the adhesion and proliferation of residual LECs to inhibit the development of posterior capsule opacification (PCO) without affecting the normal ocular tissues, demonstrating excellent in vivo biocompatibility. Moreover, the synergy of zwitterionic pCBDA and conjugated AMK with acidic-dependent release behavior endowed this PCB/AMK-coated IOL strong antibacterial activity against both in vitro biofilm formation and in vivo postoperative Staphylococcus aureus infection, suggesting its promising application in preventing POE.


Assuntos
Opacificação da Cápsula , Catarata , Endoftalmite , Lentes Intraoculares , Humanos , Catarata/patologia , Antibacterianos/farmacologia , Dopamina , Complicações Pós-Operatórias , Endoftalmite/prevenção & controle , Polímeros/química
16.
Adv Healthc Mater ; 12(23): e2300120, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37166220

RESUMO

Long-term blood-contacting devices (e.g., central venous catheters, CVCs) still face the highest incidence of blood stream infection and thrombosis in clinical application. To effectively address these complications, this work reports a dual-functional surface engineering strategy for CVCs by organic integration of endothelium-mimicking and fibrinolytic functions. In this proposal, a lysine (Lys)/Cu2+ -incorporated zwitterionic polymer coating (defined as PDA/Lys/Cu-SB) is designed and robustly fabricated onto commercial CVCs using a facile two-step process. Initially, adhesive ene-functionalized dopamine is covalently reacted with Lys and simultaneously coordinated with bactericidal Cu2+ ions, leading to the deposition of a PDA/Lys/Cu coating on CVCs through mussel foot protein inspired surface chemistry. Next, zwitterionic poly(sulfobetaine methacrylate) (pSB) brushes are grafted onto the PDA/Lys/Cu coating to endow lubricant and antifouling properties. In the final PDA/Lys/Cu-SB coating, endothelium-mimicking function is achieved by combining the catalytic generation of nitric oxide from the chelated Cu2+ with antifouling pSB brushes, which led to significant prevention of thrombosis, and bacterial infection in vivo. Furthermore, the immobilized Lys with fibrinolytic activity show remarkably enhanced long-term anti-thrombogenic properties as evidenced in vivo by demonstrating the capability to lyse nascent clots. Therefore, this developed strategy provides a promising solution for long-term blood-contacting devices to combat thrombosis and infection.


Assuntos
Infecções Bacterianas , Cateteres Venosos Centrais , Sepse , Trombose , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Metacrilatos/química , Trombose/prevenção & controle , Propriedades de Superfície
17.
Mater Horiz ; 9(4): 1309-1316, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35201246

RESUMO

The internal modification of natural hierarchical materials can largely improve their inherent properties and afford them new functions. However, conventional methods using small-molecule agents often encounter poor uniformity and low efficiency. By comparing the penetration of small molecules and nanoparticles into hierarchical collagen fibers, we propose a general strategy, namely modular penetration and controlled release (MP-CR), for the internal modification of 3D biomass materials. We demonstrate that nano-sized aluminum-loaded particles can penetrate into collagen networks more effectively and evenly than small-molecule crosslinkers. After the on-demand pH-triggered release of interactive aluminum ions, enhanced internal crosslinking is achieved. Importantly, we elucidate the mechanism in depth and show that the MP-CR strategy can comprehensively improve the overall performance of natural hierarchical materials. The MP-CR strategy represents a significant step forward for the internal modification of hierarchical materials, which will find broad applications in biomedicine, catalysis, water treatment, soft electronics, and energy storage.


Assuntos
Nanopartículas , Purificação da Água , Preparações de Ação Retardada
18.
J Mater Chem B ; 10(8): 1301-1307, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35141732

RESUMO

Gel-based strain sensors with multi-functional outstanding properties have gained considerable attention. However, conventional gel sensors suffer from unsatisfactory mechanical properties and adhesion, and also a lack of self-healing and antibacterial ability. Herein, a multi-functional ionogel has been constructed based on Ag-Lignin nanoparticles (Ag-Lignin NPs), polyurethane (PU), and ionic liquids. The obtained ionogel exhibited excellent mechanical properties (tensile strength: 3.14 MPa, elongation at break: 1241%), and was conferred self-healing ability by introducing the disulfide bonds into the main chain (the best self-healing efficiency is 97.6%). The dynamic catechol redox system based on Ag-Lignin NPs endows the ionogel with repeatable and long-lasting adhesiveness. Besides, the obtained ionogel also presented favorable antibacterial and UV absorption properties. The sensor based on the ionogel possesses good and stable sensing performance. This study proposes a bright new strategy to fabricate multi-functional ionogel-based sensors exerting broad application prospects in the field of human movement and personalized physiological health monitoring.


Assuntos
Adesivos , Dispositivos Eletrônicos Vestíveis , Adesivos/química , Antibacterianos/química , Antibacterianos/farmacologia , Humanos , Lignina , Cimentos de Resina
19.
J Colloid Interface Sci ; 610: 923-933, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34863555

RESUMO

The introduction of various drugs onto commercial soft contact lenses (CLs) has emerged as a potentially effective strategy for treating microbial keratitis (MK) because drug-loaded CLs can maintain a controlled drug concentration which leaded to enhanced drug bioavailability and reduced side effects in ocular tissues. In this study, silver nanoparticles modified with zwitterionic poly (carboxybetaine-co-dopamine methacrylamide) copolymer (PCBDA@AgNPs) as novel anti-infective therapeutics were prepared and firmly immobilized onto soft CLs through mussel-inspired surface chemistry. The obtained PCBDA@AgNPs coated CL (PCBDA@AgNPs-CL) remained the excellent transparency of commercial CLs and exhibited strong and broad-spectrum antimicrobial activities. We systematically explored the mechanism and found that the functional CLs can effectively inhibit the growth of microbial biofilms via a synergic "resist-kill-remove" strategy due to the zwitterionic surface and sustained release of silver ions. Significantly, in vitro cell cytotoxicity and in vivo subcutaneous implantation experiments proved the significant biosafety of PCBDA@AgNPs-CL. Furthermore, PCBDA@AgNPs-CL was successfully employed for the in vivo treatment of MK rabbit models, demonstrating excellent abilities to eradicate microbe-induced ocular infections and to prevent the destruction and irreversible structural alterations of corneal tissues. Collectively, PCBDA@AgNPs-CL is therefore a highly promising therapeutic device to significantly boost the efficacy for MK treatment.


Assuntos
Anti-Infecciosos , Lentes de Contato Hidrofílicas , Ceratite , Nanopartículas Metálicas , Animais , Antibacterianos/farmacologia , Ceratite/tratamento farmacológico , Testes de Sensibilidade Microbiana , Coelhos , Prata
20.
RSC Adv ; 12(46): 29852-29864, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36321088

RESUMO

The rheological and filtration performance of drilling fluids greatly depends on the additives used. To address the negative impact on the drilling fluid performance stemming from electrolyte contamination, a sustainable sodium alginate (SA) biopolymer was employed as an additive in water-based drilling fluids to overcome the performance deterioration caused by the polyelectrolyte effect under salt contamination. The results demonstrated that SA performs better than sodium carboxymethyl cellulose (Na-CMC) and polyanionic cellulose (PAC-LV), the widely used drilling fluid additives. Although exposed to highly concentrated salt contamination, the addition of SA can mitigate viscosity variation and maintain a lower filtration volume of a base fluid (BF), whereas an advanced variation in CMC/BF and PAC/BF was observed. The possible rheology and filtration mechanism of SA under highly concentrated salt contamination were investigated through zeta potential, particle size distribution, and scanning electron microscopy (SEM). The results revealed that the anchoring groups on the SA molecular chain enable them to strongly adsorb on the negatively charged bentonite surface via hydrogen and ionic bond interactions, leading to a significant improvement in both rheological and filtration performance. Therefore, SA with excellent salt tolerance and sustainability confers practical applicability that could extend to the preparation of saltwater-based and other inhibitive drilling fluids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA