RESUMO
Tibetan sheep were introduced to the Qinghai Tibet plateau roughly 3,000 B.P., making this species a good model for investigating genetic mechanisms of high-altitude adaptation over a relatively short timescale. Here, we characterize genomic structural variants (SVs) that distinguish Tibetan sheep from closely related, low-altitude Hu sheep, and we examine associated changes in tissue-specific gene expression. We document differentiation between the two sheep breeds in frequencies of SVs associated with genes involved in cardiac function and circulation. In Tibetan sheep, we identified high-frequency SVs in a total of 462 genes, including EPAS1, PAPSS2, and PTPRD. Single-cell RNA-Seq data and luciferase reporter assays revealed that the SVs had cis-acting effects on the expression levels of these three genes in specific tissues and cell types. In Tibetan sheep, we identified a high-frequency chromosomal inversion that exhibited modified chromatin architectures relative to the noninverted allele that predominates in Hu sheep. The inversion harbors several genes with altered expression patterns related to heart protection, brown adipocyte proliferation, angiogenesis, and DNA repair. These findings indicate that SVs represent an important source of genetic variation in gene expression and may have contributed to high-altitude adaptation in Tibetan sheep.
Assuntos
Altitude , Animais , Ovinos/genética , Tibet , Variação Estrutural do Genoma , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica , Genoma , Aclimatação/genéticaRESUMO
Drug therapy is vital in cancer treatment. Accurate analysis of drug sensitivity for specific cancers can guide healthcare professionals in prescribing drugs, leading to improved patient survival and quality of life. However, there is a lack of web-based tools that offer comprehensive visualization and analysis of pancancer drug sensitivity. We gathered cancer drug sensitivity data from publicly available databases (GEO, TCGA and GDSC) and developed a web tool called Comprehensive Pancancer Analysis of Drug Sensitivity (CPADS) using Shiny. CPADS currently includes transcriptomic data from over 29 000 samples, encompassing 44 types of cancer, 288 drugs and more than 9000 gene perturbations. It allows easy execution of various analyses related to cancer drug sensitivity. With its large sample size and diverse drug range, CPADS offers a range of analysis methods, such as differential gene expression, gene correlation, pathway analysis, drug analysis and gene perturbation analysis. Additionally, it provides several visualization approaches. CPADS significantly aids physicians and researchers in exploring primary and secondary drug resistance at both gene and pathway levels. The integration of drug resistance and gene perturbation data also presents novel perspectives for identifying pivotal genes influencing drug resistance. Access CPADS at https://smuonco.shinyapps.io/CPADS/ or https://robinl-lab.com/CPADS.
Assuntos
Resistencia a Medicamentos Antineoplásicos , Internet , Neoplasias , Software , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Resistencia a Medicamentos Antineoplásicos/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biologia Computacional/métodos , Bases de Dados Genéticas , Transcriptoma , Perfilação da Expressão Gênica/métodosRESUMO
Ecological divergence without geographic isolation, as an early speciation process that may lead finally to reproductive isolation through natural selection, remains a captivating topic in evolutionary biology. However, the pattern of genetic divergence underlying this process across the genome may vary between species and mating systems. Here, we present evidence that Brachypodium stacei, an annual and highly selfing grass model species, has undergone sympatric ecological divergence without geographic isolation. Genomic, transcriptomic, and metabolomic analyses together with lab experiments mimicking the two opposite environmental conditions suggest that diploid B. stacei populations have diverged sympatrically in two slopes characterized by distinct biomes at Evolution Canyon I (ECI), Mount Carmel, Israel. Despite ongoing gene flow, primarily facilitated by seed dispersal, the level of gene flow has progressively decreased over time. This local adaptation involves the scattered divergence of many unlinked loci across the total genome that include both coding genes and noncoding regions. Additionally, we have identified significant differential expressions of genes related to the ABA signaling pathway and contrasting metabolome composition between the arid- vs. forest-adapted B. stacei populations in ECI. These results suggest that multiple small loci involved in environmental responses act additively to account for ecological adaptations by this selfing species in contrasting environments.
Assuntos
Brachypodium , Brachypodium/genética , Diploide , Isolamento Reprodutivo , Ecossistema , Genoma de Planta/genética , Especiação GenéticaRESUMO
SignificanceWhether sympatric speciation (SS) is rare or common is still debated. Two populations of the spiny mouse, Acomys cahirinus, from Evolution Canyon I (EC I) in Israel have been depicted earlier as speciating sympatrically by molecular markers and transcriptome. Here, we investigated SS both genomically and methylomically, demonstrating that the opposite populations of spiny mice are sister taxa and split from the common ancestor around 20,000 years ago without an allopatric history. Mate choice, olfactory receptors, and speciation genes contributed to prezygotic/postzygotic reproductive isolation. The two populations showed different methylation patterns, facilitating adaptation to their local environment. They cope with abiotic and biotic stresses, due to high solar interslope radiation differences. We conclude that our new genomic and methylomic data substantiated SS.
Assuntos
Isolamento Reprodutivo , Simpatria , Animais , Especiação Genética , Genoma , Israel , Murinae/genética , Simpatria/genéticaRESUMO
The phylogeny and speciation of subterranean zokors in China are unclear, as previous studies on morphology and limited molecular markers have generated conflicting results. This study unraveled the complex evolutionary history of eight zokor species in China based on de novo assembly at chromosome level and whole-genome sequencing of 23 populations. We found extensive phylogenetic discordances between nuclear and mitochondrial phylogenies, and different coalescent phylogenies, which could be explained by introgression and incomplete lineage sorting (ILS). The recent Qinghai-Tibet Plateau uplift (â¼3.60 million y ago; Mya) drove Eospalax to speciate into clade A and clade B (â¼3.22 Mya), and discordant phylogenies in this node were mainly attributed to introgression rather than ILS. Clade A rapidly diverged into three lineages due to geographical isolation and glaciation, while glaciation and C4 plant expansion contributed to the speciation of clade B. ILS contributed to the discordances of two rapidly radiated nodes rather than introgression. The effective population sizes (Ne's) of all the species of Eospalax were affected by three glaciations. Ancient polymorphisms and divergence hitchhiking contribute to genomic islands of all the species pairs. Positively selected genes putatively related to specific inhabitation adaptations were identified, such as heart development, neurogenesis, DNA repair, and immune response. Climate, geological tectonism, and C4 vegetation shaped the adaptation and speciation of zokors in China.
Assuntos
Genoma , Roedores , Animais , China , Genômica , Filogenia , Roedores/genética , TibetRESUMO
Both homeologous exchanges and homeologous expression bias are generally found in most allopolyploid species. Whether homeologous exchanges and homeologous expression bias differ between repeated allopolyploid speciation events from the same progenitor species remains unknown. Here, we detected a third independent and recent allotetraploid origin for the model grass Brachypodium hybridum. Our homeologous exchange with replacement analyses indicated the absence of significant homeologous exchanges in any of the three types of wild allotetraploids, supporting the integrity of their progenitor subgenomes and the immediate creation of the amphidiploids. Further homeologous expression bias tests did not uncover significant subgenomic dominance in different tissues and conditions of the allotetraploids. This suggests a balanced expression of homeologs under similar or dissimilar ecological conditions in their natural habitats. We observed that the density of transposons around genes was not associated with the initial establishment of subgenome dominance; rather, this feature is inherited from the progenitor genome. We found that drought response genes were highly induced in the two subgenomes, likely contributing to the local adaptation of this species to arid habitats in the third allotetraploid event. These findings provide evidence for the consistency of subgenomic stability of parental genomes across multiple allopolyploidization events that led to the same species at different periods. Our study emphasizes the importance of selecting closely related progenitor species genomes to accurately assess homeologous exchange with replacement in allopolyploids, thereby avoiding the detection of false homeologous exchanges when using less related progenitor species genomes.
Assuntos
Brachypodium , Brachypodium/genética , Genoma de Planta , PoliploidiaRESUMO
Cell death is of great significance in maintaining tissue homeostasis and bodily functions. With considerable research coming to the fore, it has been found that programmed cell death presents in multiple modalities in the body, which is not only limited to apoptosis, but also can be divided into autophagy, pyroptosis, ferroptosis, mitotic catastrophe, entosis, netosis, and other ways. Different forms of programmed cell death have disparate or analogous characteristics with each other, and their occurrence is accompanied by multiple signal transduction and the role of a myriad of regulatory factors. In recent years, scholars across the world have carried out considerable in-depth research on programmed cell death, and new forms of cell death are being discovered continually. Concomitantly, the mechanisms of intricate signaling pathways and regulators have been discovered. More critically, cancer cells tend to choose distinct ways to evade cell death, and different tumors adapt to different manners of death. Therefore, targeting the cell death network has been regarded as an effective tumor treatment strategy for a long time. The objective of our paper is to review the signaling pathways and gene regulation in several typical types of programmed cell death and their correlation with cancer.
RESUMO
Macrophages play a crucial role in host response and wound healing, with M2 polarization contributing to the reduction of foreign-body reactions induced by the implantation of biomaterials and promoting tissue regeneration. Electrical stimulation (ES) and micropatterned substrates have a significant impact on the macrophage polarization. However, there is currently a lack of well-established cell culture platforms for studying the synergistic effects of these two factors. In this study, we prepared a graphene free-standing substrate with 20 µm microgrooves using capillary forces induced by water evaporation. Subsequently, we established an ES cell culture platform for macrophage cultivation by integrating a self-designed multi-well chamber cell culture device. We observed that graphene microgrooves, in combination with ES, significantly reduce cell spreading area and circularity. Results from immunofluorescence, ELISA, and flow cytometry demonstrate that the synergistic effect of graphene microgrooves and ES effectively promotes macrophage M2 phenotypic polarization. Finally, RNA sequencing results reveal that the synergistic effects of ES and graphene microgrooves inhibit the macrophage actin polymerization and the downstream PI3K signaling pathway, thereby influencing the phenotypic transition. Our results demonstrate the potential of graphene-based microgrooves and ES to synergistically modulate macrophage polarization, offering promising applications in regenerative medicine.
Assuntos
Estimulação Elétrica , Grafite , Macrófagos , Grafite/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Animais , Camundongos , Células RAW 264.7 , Polaridade Celular/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de SinaisRESUMO
Diarrhea is one of the major public health issues worldwide. Although the infections of individual enteric virus have been extensively studied, elucidation of the coinfection involving multiple viruses is still limited. In this study, we identified the coinfection of human adenovirus (HAdV) and human astrovirus (HAstV) in a child with acute gastroenteritis, analyzed their genotypes and molecular evolution characteristics. The sample was collected and identified using RT-PCR and subjected to whole-genome sequencing on the NovaSeq (Illumina) platform. Obtained sequences were assembled into the complete genome of HAdV and the ORF1 of HAstV. We conducted phylogenetic analysis using IQ-TREE software and conducted recombination analysis with the Recombination Detection Program. The sequenced HAdV was confirmed to be genotype 41, and was genetically close to some European strains. Phylogenetic analysis revealed that the HAstV was genetically close to both HAstV-2 and HAstV-4 and was different from the genotype prevalent in Shenzhen before. The recombination analysis confirmed that the sequenced HAstV strain is a recombinant of HAstV-2 and HAstV-4. Our analysis has shown that the strains in this coinfection are both uncommon variants in this geographical region, instead of dominant subtypes that have prevailed for years. This study presents a coinfection of HAdV and HAstV and conducts an evolutionary analysis on involved viruses, which reveals the genetic diversity of epidemic strains in Southern China and offers valuable insights into vaccine and medical research.
Assuntos
Infecções por Adenovirus Humanos , Adenovírus Humanos , Infecções por Astroviridae , Coinfecção , Gastroenterite , Genótipo , Mamastrovirus , Filogenia , Recombinação Genética , Humanos , Coinfecção/virologia , Coinfecção/epidemiologia , Gastroenterite/virologia , Mamastrovirus/genética , Mamastrovirus/isolamento & purificação , Mamastrovirus/classificação , China/epidemiologia , Infecções por Astroviridae/virologia , Infecções por Astroviridae/epidemiologia , Adenovírus Humanos/genética , Adenovírus Humanos/classificação , Adenovírus Humanos/isolamento & purificação , Infecções por Adenovirus Humanos/virologia , Infecções por Adenovirus Humanos/epidemiologia , Genoma Viral/genética , Sequenciamento Completo do Genoma , Masculino , Análise de Sequência de DNA , Pré-Escolar , Evolução MolecularRESUMO
BACKGROUND: High-risk human papillomavirus (HPV) infection is a major risk factor of HPV-related tumors, especially cervical cancer. To date, there is no specific drug for the treatment of HPV infection. PURPOSE: To explore the role of canonical Wnt signaling pathway in HPV16 infection and to screen inhibitors against HPV16 infection from natural small molecule compounds targeting the canonicalWnt pathway. METHODS: Wnt pathway inhibitor IWP-2 and FH535 were used to inhibit Wnt/ß-catenin signaling pathway. HPV16-GFP pseudovirus infectivity were analyzed by fluorescence microscopy and fluorescence activated cell sorting. A small molecule screening of a total of CFDA-approved 29 natural compounds targeting the Wnt pathway was performed. RESULTS: Wnt signaling pathway inhibitor suppressed HPV16-GFP pseudovirus infection in HaCat cells. Natural small molecule compounds screening identified 6-Gingerol, gossypol, tanshinone II2A, and EGCG as inhibitors of HPV16-GFP pseudovirus infection. CONCLUSION: Wnt signaling pathway is involved in the process of HPV infection of host cells. 6-Gingerol, gossypol, tanshinone II2A, and EGCG inhibited HPV16-GFP pseudovirus infection and suppressed Wnt/ß-catenin pathway in HaCat cells.
Assuntos
Infecções por Papillomavirus , Via de Sinalização Wnt , Humanos , Via de Sinalização Wnt/efeitos dos fármacos , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/tratamento farmacológico , Papillomavirus Humano 16/efeitos dos fármacos , Linhagem Celular , Antivirais/farmacologia , Produtos Biológicos/farmacologia , Células HaCaT , beta Catenina/metabolismo , Catecóis/farmacologiaRESUMO
Benzene occurs naturally and is widely applied in the production process of petrochemical products. It is mainly exposed through the respiratory tract and dermal and metabolized in the liver, leading to systemic health effects, and 1,2,4-trihydroxybenzene (THB) is a benzene metabolite used as a hair dye ingredient in some countries. In an effort to identify a toxic mechanism of THB, we first analyzed the hair of consumers who used a shampoo containing THB, and contrary to our expectations, THB was not persistent in the hair. Following, we treated THB to human keratinocytes and HeLa Chang liver cells. Membrane damage was observed in both cell lines, which was more notable in HeLa Chang liver cells than in keratinocytes. Thus, we decided on HeLa Chang liver cells as target cells for further study. Cell viability decreased sharply between 20 µg/ml and 40 µg/mL, inducing G2/M phase arrest and non-apoptotic cell death. The expression of carcinogenesis-, DNA damage-, and transcriptional dysregulation-related genes were notably up-regulated, and the structure and function of mitochondria were disrupted. The volume of the ER and acidic compartments decreased, and intracellular ROS and calcium ion levels increased. More interestingly, we found that THB formed unique structures within the cells, especially around the nuclear membrane, and that those structures seemed to dig into the nucleus over time. A reverse docking analysis also showed that SULT1A1, CYP2E1, and CAT, known to play a significant role in protecting cells from harmful factors, might be potential target proteins for THB. Taken together, we suggest that THB induces non-apoptotic cell death via structural damage of intracellular organelles, especially the nuclear membrane.
RESUMO
Dry eye disease is a multifactorial dysfunction of the tear film and ocular surface, with etiology involving inflammation and oxidative stress on the ocular surface. Pterostilbene (PS) is a secondary metabolite extracted from plants, which possesses remarkable anti-inflammatory and antioxidant effects. However, its application is limited by light instability and very poor water solubility. We modified fat-soluble PS into a biparental pterostilbene-glutaric anhydride-arginine-glycine-aspartic acid (PS-GA-RGD) nanomedicine by prodrug ligation of functional peptides. The aim of this study was to explore the protective effect and potential mechanism of PS-GA-RGD on dry eye disease in vitro and in vivo. We demonstrated good long-term biocompatibility of PS-GA-RGD through rabbit eye stimulation test. Lipopolysaccharide (LPS) was used to induce murine macrophages RAW 264.7 to establish an inflammation and oxidative stress model. In this model, PS-GA-RGD effectively reduced the production of ROS and 8-OHdG, enhancing the expression of antioxidant factor Nrf2 and antioxidant enzyme heme oxygenase-1. In addition, the expression of NF-κB inflammatory pathway significantly increased in LPS-induced RAW 264.7 cells, while PS-GA-RGD could significantly reduce this pathway. Hypertonic saline was utilized to establish a hypertonic model of human corneal epithelial cells. PS-GA-RGD was found to significantly reduce the production of ROS and NLRP3 inflammasomes in this model, exhibiting superior efficacy compared to PS. Experimental dry eye animal models were co-induced with subcutaneous injection of scopolamine and an intelligently controlled environmental system. We demonstrated that PS-GA-RGD nano drugs can prevent and reduce corneal epithelial cell defects and apoptosis, protect conjunctival goblet cells, and have an excellent anti-inflammatory effect. Finally, we demonstrated that RGD sequence in PS-GA-RGD can enhance cellular uptake, corneal retention, and penetration, thereby increasing their bioavailability and efficacy by a cell uptake assay and rabbit corneal drug retention experiment. Overall, this study highlights the potential of PS-GA-RGD nanomedicines in the treatment of dry eyes.
Assuntos
Antioxidantes , Síndromes do Olho Seco , Camundongos , Humanos , Animais , Coelhos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Lipopolissacarídeos , Síndromes do Olho Seco/metabolismo , Inflamação/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Oligopeptídeos/farmacologia , Oligopeptídeos/uso terapêutico , Modelos Animais de DoençasRESUMO
KEY MESSAGE: The major irregular chromosome pairing and mis-segregation were detected during meiosis through unambiguous chromosome identification and found that allotriploid Brassica can undergo meiosis successfully and produce mostly viable aneuploid gametes. Triploids have played a crucial role in the evolution of species by forming polyploids and facilitating interploidy gene transfer. It is widely accepted that triploids cannot undergo meiosis normally and predominantly produce nonfunctional aneuploid gametes, which restricts their role in species evolution. In this study, we demonstrated that natural and synthetic allotriploid Brassica (AAC), produced by crossing natural and synthetic Brassica napus (AACC) with Brassica rapa (AA), exhibits basically normal chromosome pairing and segregation during meiosis. Homologous A chromosomes paired faithfully and generally segregated equally. Monosomic C chromosomes were largely retained as univalents and randomly entered daughter cells. The primary irregular meiotic behaviors included associations of homoeologs and 45S rDNA loci at diakinesis, as well as homoeologous chromosome replacement and premature sister chromatid separation at anaphase I. Preexisting homoeologous arrangements altered meiotic behaviors in both chromosome irregular pairing and mis-segregation by increasing the formation of A-genomic univalents and A-C bivalents, as well as premature sister chromatid separation and homologous chromosome nondisjunction. Meiotic behaviors depended significantly on the genetic background and heterozygous homoeologous rearrangement. AAC triploids mainly generated aneuploid gametes, most of which were viable. These results demonstrate that allotriploid Brassica containing an intact karyotype can proceed through meiosis successfully, broadening our current understanding of the inheritance and role in species evolution of allotriploid.
Assuntos
Pareamento Cromossômico , Cromossomos de Plantas , Meiose , Cromossomos de Plantas/genética , Brassica napus/genética , Brassica napus/crescimento & desenvolvimento , Segregação de Cromossomos/genética , Triploidia , Brassica rapa/genética , Brassica/genética , Brassica/fisiologia , AneuploidiaRESUMO
Presently, the utilization of gasification slag in the context of wastewater treatment is constrained. Furthermore, the presence of dye wastewater and wastewater containing hazardous metals represents a significant threat to human health. Accordingly, the present study prepared a microelectrolytic filler (MF) from gasification slag via a high-temperature roasting method and evaluated its degradation performance in water containing organic matter and harmful metal ions. The impact of varying preparation conditions, including initial solution pH and MF dose, on the degradation process was examined. The removal of methyl blue was found to be 92.21% at an initial pH of 2, a reaction time of 300 min and a dosage of 40 g L-1. The removal of Cu(II), Cd(II), and Pb(II) metal ions was 97.32, 96.58, and 99.38%, respectively, at an initial pH of 4, a reaction time of 180 min, and a dosage of 10 g L-1. Following five cycles, the MF process demonstrated continued efficacy in the removal of dyes and heavy metals from the wastewater. A mechanistic analysis revealed that the water treatment process is not a single adsorption process. Instead, it was found that organic macromolecules undergo chain-breaking reactions, while heavy metal ions undergo redox reactions. The wastewater treatment process comprises a number of distinct strategies, including electrochemical reactions, adsorption, flocculation, and precipitation. These findings illustrate the potential of a gasification slag green recycling approach to treat waste with waste, in alignment with the principles of sustainable development.
RESUMO
Rubidium (Rb) and cesium (Cs) have important applications in highly technical fields. Salt lakes contain huge reserves of Rb and Cs with industrial significance, which can be utilized after extraction. In this study, a composite magnetic adsorbent (Fe3O4@ZIF-8@AMP, AMP = ammonium phosphomolybdate) was prepared and its adsorption properties for Rb+ and Cs+ were studied in simulated and practical brine. The structure of the adsorbent was characterized by SEM, XRD, N2 adsorption-desorption, FT-IR, and vibrating sample magnetometer (VSM). The adsorbent had good adsorption affinity for Rb+ and Cs+. The Langmuir model and pseudo-second-order dynamics described the adsorbing isotherm and kinetic dates, respectively. The adsorption capacity and adsorption rate of Fe3O4@ZIF-8@AMP were increased by 1.86- and 2.5-fold compared with those of powdered crystal AMP, owing to the large specific surface area and high dispersibility of the adsorbent in the solution. The adsorbent was rapidly separated from the solution within 17 s using an applied magnetic field owing to the good magnetic properties. The composite adsorbent selectively adsorbed Rb+ and Cs+ from the practical brine even in the presence of a large number of coexisting ions. The promising adsorbent can be used to extract Rb+ and Cs+ from aqueous solutions.
RESUMO
Decarbonylative borylation of aryl anhydrides by rhodium catalysis has been reported. A base-free system with Rh(PPh3)3Cl as a catalyst enables the efficient synthesis of various arylboronate esters from readily available aryl anhydrides. The reaction involves the cleavage of C(O)-O bonds and the formation of C-B bonds. The experimental results demonstrated that compared with carboxylic acids, amides, and esters, anhydrides have higher reactivity in the decarbonylative borylation reaction under the current conditions. Furthermore, compared with the reported palladium-catalyzed borylation reaction of aryl anhydrides, the present rhodium-catalyzed method has the advantages of a shorter reaction time and a lower reaction temperature.
RESUMO
Nuclear imaging of aggregated α-synuclein pathology is an urgent clinical need for Parkinson's disease, yet promising tracers for brain α-synuclein aggregates are still rare. In this work, a class of compact benzothiazole derivatives was synthesized and evaluated for α-synuclein aggregates. Among them, azobenzothiazoles exhibited specific and selective detection of α-synuclein aggregates under physiological conditions. Fluoro-pegylated azobenzothiazole NN-F further demonstrated high-affinity binding to α-synuclein aggregates and efficient 18F-radiolabeling via nucleophilic displacement of a tosyl precursor. [18F]NN-F was stable in plasma in vitro and showed efficient brain uptake with little defluorination in vivo.
Assuntos
Benzotiazóis , Encéfalo , Radioisótopos de Flúor , Agregados Proteicos , alfa-Sinucleína , alfa-Sinucleína/metabolismo , alfa-Sinucleína/química , Radioisótopos de Flúor/química , Benzotiazóis/química , Benzotiazóis/síntese química , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Animais , Humanos , Camundongos , Estrutura Molecular , Tomografia por Emissão de PósitronsRESUMO
OBJECTIVE: Human papillomavirus (HPV) integration is a crucial genetic step in cervical carcinogenesis. This study aimed to evaluate the performance of an HPV integration test for the triage of HPV-positive women. DESIGN: An observational cohort study. SETTING: A cervical cancer screening programme in China. POPULATION: 1393 HPV-positive women aged 25-65 years undergoing routine cervical cancer screening and HPV integration testing with 1-year follow-up. METHODS: The sensitivity, specificity, positive predictive value and negative predictive value between HPV integration and cytology were compared. MAIN OUTCOME MEASURES: Cervical intraepithelial neoplasia grade 3 or more severe (CIN3+). RESULTS: Among 1393 HPV-positive patients, 138 (9.9% [8.3-11.5%]) were HPV integration test positive compared with 537 who had abnormal cervical cytology (38.5% [36.0-41.1%]). Compared with cytology, HPV integration exhibited higher specificity (94.5% [93.3-95.8%] versus 63.8% [61.2-66.4%]) and equivalent sensitivity (70.5% [61.4-79.7%] versus 70.5% [61.4-79.7%]) for detection of CIN3+. HPV integration-negative women accounted for 90.1% (1255/1393) of the total population and had a low immediate CIN3+ risk (2.2%). At 1-year follow-up, the progression rate in the HPV integration-positive women was higher than in the HPV integration-negative women (12.0% versus 2.1%, odds ratio 5.6, 95% CI, 2.6-11.9). In 10 conservatively managed integration-negative CIN2 patients, all showed spontaneous regression and seven showed HPV clearance after 1-year follow-up. CONCLUSION: The HPV integration test may be a precise risk stratification tool for HPV-positive women and could avoid excessive use of invasive biopsies.
Assuntos
Infecções por Papillomavirus , Displasia do Colo do Útero , Neoplasias do Colo do Útero , Humanos , Feminino , Gravidez , Neoplasias do Colo do Útero/patologia , DNA Viral , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/diagnóstico , Detecção Precoce de Câncer , Displasia do Colo do Útero/diagnóstico , Estudos de Coortes , Papillomaviridae/genética , Esfregaço Vaginal , ColposcopiaRESUMO
Fish consumption can increase purine load in human body, and the enrichment of mercury in fish may affect the glomerular filtration function, both resulting in increased serum uric acid (SUA) levels. The data of blood mercury (BHg), fish consumption frequency and SUA levels of 7653 participants aged 18 years or older was from China National Human Biomonitoring (2017-2018). The associations between fish consumption frequency, ln-transformed BHg and SUA levels were explored through weighted multiple linear regressions. The mediating effect of BHg levels between fish consumption frequency and SUA levels was evaluated by mediation analysis. We found that both the fish consumption frequency and BHg were positively associated with SUA levels in both sexes. Compared to participants who had never consumed fish, participants who consumed fish once a week or more had higher SUA levels [ß (95% confidence interval, CI): 20.39 (2.16, 38.62) in males; ß (95% CI): 10.06 (0.76, 19.37) in females] and ln-transformed BHg [ß (95% CI): 0.97 (0.61, 1.34) in males; ß (95% CI): 0.84 (0.63, 1.05) in females]. Each 1-unit increase in ln-transformed BHg, the SUA levels rose by 4.78 (95% CI: 0.01, 9.54) µmol/L for males and 3.81 (95% CI: 1.60, 6.03) µmol/L for females. The association between fish consumption with SUA levels was mediated by ln-transformed BHg with the percent mediated of 34.66% in males and 26.58% in females. It revealed that BHg played mediating roles in the elevation of SUA levels caused by fish consumption. This study's findings could promote the government to intervene in mercury pollution in fish, so as to ensure the safety of fish consumption.
Assuntos
Mercúrio , Alimentos Marinhos , Ácido Úrico , Adolescente , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Monitoramento Biológico , China , Dieta , População do Leste Asiático , Contaminação de Alimentos/análise , Mercúrio/sangue , Ácido Úrico/sangue , Poluentes Químicos da Água/sangueRESUMO
Diarrhea is a common issue in domestic yaks (Bos grunniens) that can occur with pasture alterations and significantly impacts growth performance. Previous research has examined the microbiota of diarrhetic yaks; however, the structural changes in gut bacterial community and microbial interactions in yaks with grassland alteration-induced diarrhea remain poorly understood. To explore variations in gut microbiota homeostasis among yaks suffering from diarrhea, fecal microbiota diversity and composition were analyzed using 16 S rRNA amplicon sequencing. Gut fecal microbiota diversity was lower in diarrhetic yaks than in non-diarrhetic yaks. Furthermore, the bacterial community composition (including that of Proteobacteria and Actinobacteria) in the feces of diarrhetic yaks displayed significant alterations. Co-occurrence network analysis further underscored the compromised intestinal flora stability in yaks with diarrhea relative to that in non-diarrhetic yaks. Interestingly, the abundance of beneficial bacteria, such as Lachnospiraceae_AC2044_group and Lachnospiraceae_NK4A136_group, were decreased in yaks with diarrhea, and the reductions were negatively correlated with the fecal water content. Collectively, these findings indicate that diminished microbial stability and increased abundance of certain bacteria in the gut may contribute to diarrhea occurrence in yaks.