Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Chem Rev ; 123(15): 9676-9717, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37428987

RESUMO

Multicomponent metallic nanomaterials with unconventional phases show great prospects in electrochemical energy storage and conversion, owing to unique crystal structures and abundant structural effects. In this review, we emphasize the progress in the strain and surface engineering of these novel nanomaterials. We start with a brief introduction of the structural configurations of these materials, based on the interaction types between the components. Next, the fundamentals of strain, strain effect in relevant metallic nanomaterials with unconventional phases, and their formation mechanisms are discussed. Then the progress in surface engineering of these multicomponent metallic nanomaterials is demonstrated from the aspects of morphology control, crystallinity control, surface modification, and surface reconstruction. Moreover, the applications of the strain- and surface-engineered unconventional nanomaterials mainly in electrocatalysis are also introduced, where in addition to the catalytic performance, the structure-performance correlations are highlighted. Finally, the challenges and opportunities in this promising field are prospected.

2.
Nano Lett ; 24(33): 10081-10089, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39109585

RESUMO

Multifunctional vertically aligned nanocomposite (VAN) thin films exhibit considerable potential in diverse fields. Here, a BaTiO3-FeCoNi alloy (BTO-FCN) system featuring an ultrathin ternary FCN alloy nanopillar array embedded in the BTO matrix has been developed with tailorable nanopillar size and interpillar distance. The magnetic alloy nanopillars combined with a ferroelectric oxide matrix present intriguing multifunctionality and coupling properties. The room-temperature magnetic response proves the soft magnet nature of the BTO-FCN films with magnetic anisotropy has been demonstrated. Furthermore, the anisotropic nature of the dielectric-metal alloy VAN renders it an ideal candidate for hyperbolic metamaterial (HMM), and the epsilon-near-zero (ENZ) wavelength, where the real part of permittivity (ε') turns to negative, can be tailored from ∼700 nm to ∼1050 nm. Lastly, room-temperature multiferroicity has been demonstrated via interfacial coupling between the magnetic nanopillars and ferroelectric matrix.

3.
Nano Lett ; 23(4): 1474-1480, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36779931

RESUMO

The electroreduction of carbon dioxide into high-value-added products is an effective approach to alleviating the energy crisis and pollution issues. However, there are still significant challenges for multicarbon (C2+) product production due to the lack of efficient catalysts with high selectivity. Herein, a Cu-rich electrocatalyst, where Cu2O nanoparticles are decorated on two-dimensional (2D) Cu-BDC metal-organic frameworks (MOFs) with abundant heterogeneous interfaces, is synthesized for highly selective CO2 electroreduction into C2+ products. A high C2+ Faradaic efficiency of 72.1% in an H-type cell and 58.2% in a flow cell are obtained, respectively. The heterogeneous interfaces of Cu2O/Cu-BDC can optimize the adsorption energy of reaction intermediates during CO2 electroreduction. An in situ infrared spectroscopy study indicates that the constructed interfaces can maintain the particular distribution of Cu valence states, where the C-C coupling is promoted to efficiently produce C2+ products owing to the stabilization of *CHO and *COH intermediates.

4.
Angew Chem Int Ed Engl ; 62(3): e202213783, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36400747

RESUMO

High-entropy alloys (HEAs) have been attracting extensive research interests in designing advanced nanomaterials, while their precise control is still in the infancy stage. Herein, we have reported a well-defined PtBiPbNiCo hexagonal nanoplates (HEA HPs) as high-performance electrocatalysts. Structure analysis decodes that the HEA HP is constructed with PtBiPb medium-entropy core and PtBiNiCo high-entropy shell. Significantly, the HEA HPs can reach the specific and mass activities of 27.2 mA cm-2 and 7.1 A mgPt -1 for formic acid oxidation reaction (FAOR), being the record catalyst ever achieved in Pt-based catalysts, and can realize the membrane electrode assembly (MEA) power density (321.2 mW cm-2 ) in fuel cell. Further experimental and theoretical analyses collectively evidence that the hexagonal intermetallic core/atomic layer shell structure and multi-element synergy greatly promote the direct dehydrogenation pathway of formic acid molecule and suppress the formation of CO*.

5.
Nanotechnology ; 33(40)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35313284

RESUMO

Multiferroic materials have generated great interest due to their potential as functional device materials. Nanocomposites have been increasingly used to design and generate new functionalities by pairing dissimilar ferroic materials, though the combination often introduces new complexity and challenges unforeseeable in single-phase counterparts. The recently developed approaches to fabricate 3D super-nanocomposites (3D-sNC) open new avenues to control and enhance functional properties. In this work, we develop a new 3D-sNC with CoFe2O4(CFO) short nanopillar arrays embedded in BaTiO3(BTO) film matrix via microstructure engineering by alternatively depositing BTO:CFO vertically-aligned nanocomposite layers and single-phase BTO layers. This microstructure engineering method allows encapsulating the relative conducting CFO phase by the insulating BTO phase, which suppress the leakage current and enhance the polarization. Our results demonstrate that microstructure engineering in 3D-sNC offers a new bottom-up method of fabricating advanced nanostructures with a wide range of possible configurations for applications where the functional properties need to be systematically modified.

6.
Nano Lett ; 21(2): 980-987, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33448862

RESUMO

Electroreduction of carbon dioxide (CO2RR) has been regarded as a promising approach to realize the production of useful fuels and to decrease greenhouse gas levels simultaneously, where high-efficiency catalysts are required. Herein, we report La2CuO4 nanobamboo (La2CuO4 NBs) perovskite with rich twin boundaries showing a high Faraday efficiency (FE) of 60% toward ethylene (C2H4), whereas bulk La2CuO4 exhibits a FECO of 91%. X-ray absorption spectroscopy (XAS) reveals that the Cu in La2CuO4 NBs is in the Cu2+ state, and no obvious change can be observed during the catalytic process, as monitored by in situ XAS. Density functional theory calculations reveal that the superior FEC2H4 of La2CuO4 NBs originates from the active (113) surfaces with intrinsic strain. The formation of gap states annihilates the electron transfer barrier of C-C coupling, resulting in the high FEC2H4. This work provides a new perspective for developing efficient perovskite catalysts via grain boundary engineering.

7.
Nano Lett ; 21(12): 5075-5082, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34061555

RESUMO

Platinum (Pt) catalysts play a key role in energy conversion and storage processes, but the realization of further performance enhancement remains challenging. Herein, we report a new class of Pt superstructures (SSs) with surface distortion engineering by electrochemical leaching of PtTex SSs that can largely boost the oxygen reduction reaction (ORR), the methanol oxidation reaction (MOR), and the hydrogen evolution reaction (HER). In particular, the high-distortion (H)-Pt SSs achieve a mass activity of 2.24 A mg-1 at 0.90 VRHE for the ORR and 2.89 A mg-1 for the MOR as well as a low overpotential of 25.3 mV at 10 mA cm-2 for the HER. Moreover, the distorted surface features of Pt SSs can be preserved by mitigating the detrimental effects of agglomeration/degradation during long-time electrocatalysis. A multiscale modeling demonstrates that surface compressions, defects, and nanopores act in synergy for the enhanced ORR performance. This work highlights the advances of stable superstructure and distortion engineering for realizing high-performance Pt nanostructures.

8.
Chem Soc Rev ; 49(10): 3072-3106, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32309830

RESUMO

Metallic nanostructures with low dimensionality (one-dimension and two-dimension) possess unique structural characteristics and distinctive electronic and physicochemical properties including high aspect ratio, high specific surface area, high density of surface unsaturated atoms and high electron mobility. These distinctive features have rendered them remarkable advantages over their bulk counterparts for surface-related applications, for example, electrochemical water splitting. In this review article, we highlight the recent research progress in low-dimensional metallic nanostructures for electrochemical water splitting including hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Fundamental understanding of the electrochemistry of water splitting including HER and OER is firstly provided from the aspects of catalytic mechanisms, activity descriptors and property evaluation metrics. Generally, it is challenging to obtain low-dimensional metallic nanostructures with desirable characteristics for HER and OER. We hereby introduce several typical methods for synthesizing one-dimensional and two-dimensional metallic nanostructures including organic ligand-assisted synthesis, hydrothermal/solvothermal synthesis, carbon monoxide confined growth, topotactic reduction, and templated growth. We then put emphasis on the strategies adopted for the design and fabrication of high-performance low-dimensional metallic nanostructures for electrochemical water splitting such as alloying, structure design, surface engineering, interface engineering and strain engineering. The underlying structure-property correlation for each strategy is elucidated aiming to facilitate the design of more advanced electrocatalysts for water splitting. The challenges and perspectives for the development of electrochemical water splitting and low-dimensional metallic nanostructures are also proposed.

9.
Nano Lett ; 20(11): 8282-8289, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33172281

RESUMO

The renewable electricity-driven reduction of carbon dioxide (CO2RR) is a promising technology for carbon utilization. However, it is still a challenge to broaden the application of CO2RR. Herein, we report a Te-doped Pd nanocrystals (Te-Pd NCs) for promoting urea synthesis by coupling CO2RR with electrochemical reduction of nitrite. The electrochemical synthesis of urea has been achieved with nearly 12.2% Faraday efficiency (FE) and 88.7% N atom efficiency (NE) at -1.1 V versus reversible hydrogen electrode (vs RHE), much higher than those of pure Pd NCs (4.2% FE and 21.8% NE). Significantly, an FE of ∼10.2% and an NE of ∼82.3% for urea solution production via an optimized flow cell system have been realized, where a solution with up to 0.95 wt % of urea has been obtained. Mechanistic insights show that Te-doping not only optimizes the CO2/CO adsorption but also promotes NH3 production, fully meeting the requirements of urea synthesis.

10.
Nano Lett ; 20(7): 5482-5489, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32515969

RESUMO

Single-atom site catalysts (SACs) have aroused enormous attention and brought about new opportunities for many applications. Herein, we report a versatile strategy to rhodium (Rh) SAC by a facile cation exchange reaction. Remarkably, the Rh SAC modified CuO nanowire arrays on copper foam (Rh SAC-CuO NAs/CF) show unprecedented alkaline oxygen evolution reaction (OER) activity with a high current density of 84.5 mA cm-2@1.5 V vs reversible hydrogen electrode (RHE), 9.7 times that of Ir/C/CF. More strikingly, when used as an anode and a cathode for overall water splitting, the Rh SAC-CuO NAs/CF can achieve 10 mA cm-2 at only 1.51 V. Density functional theory calculations reveal that the high OER and HER intrinsic catalytic activities result from moderate adsorption energy of intermediates on Rh SAC. Finally, we demonstrate the general synthesis of different single-atom noble-metal catalysts on CuO NAs (M SAC-CuO NAs/CF, where M = Ru, Ir, Os, and Au).

11.
Angew Chem Int Ed Engl ; 60(32): 17430-17434, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34050593

RESUMO

Over the past decades, despite the substantial efforts that have been devoted to the modifications of Pt nanoparticles (NPs) to tailor their selectivities for hydrogenation reactions, there are still a lack of facile strategies for precisely regulation of the surface properties of NPs, especially for those with small sizes. In this work, we propose a top-down thermal annealing strategy for tuning the surface properties of Pt-based NPs (≈4 nm) without the occurrence of aggregation. Compared to conventional bottom-up methods, the present top-down strategy can precisely regulate the surface compositions of Pt-Cd NPs and other ternary Pt-Cd-M NPs (M=Fe, Ni, Co, Mn, and Sn). The optimized Pt-Cd NPs exhibit excellent selectivity toward phenylacetylene and 4-nitrostyrene hydrogenations with a styrene selectivity and 4-aminophenyl styrene selectivity of 95.2 % and 94.5 %, respectively. This work provides a general strategy for the surface reconstructions of Pt-based NPs, and promotes fundamental research on catalyst design for heterogeneous catalysis.

12.
Chemistry ; 26(18): 3943-3960, 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-31483074

RESUMO

Amorphous oxides have attracted special attention as advanced electrocatalysts owing to their unique local structural flexibility and attractive electrocatalytic properties. With abundant randomly oriented bonds and surface-exposed defects (e.g., oxygen vacancies) as active catalytic sites, the adsorption/desorption of reactants can be optimized, leading to superior catalytic activities. Amorphous oxide materials have found wide electrocatalytic applications ranging from hydrogen evolution and oxygen evolution to oxygen reduction, CO2 electroreduction and nitrogen electroreduction. The amorphous oxide electrocatalysts even outperform their crystalline counterparts in terms of electrocatalytic activity and stability. Despite of the merits and achievements for amorphous oxide electrocatalysts, there are still issues and challenges existing for amorphous oxide electrocatalysts. There are rarely reviews specifically focusing on amorphous oxide electrocatalysts and therefore it is imperative to have a comprehensive overview of the research progress and to better understand the achievements and issues with amorphous oxide electrocatalysts. In this minireview, several general preparation methods for amorphous oxides are first introduced. Then, the achievements in amorphous oxides for several important electrocatalytic reactions are summarized. Finally, the challenges and perspectives for the development of amorphous oxide electrocatalysts are outlined.

13.
Angew Chem Int Ed Engl ; 59(7): 2649-2653, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31765075

RESUMO

Crystal phase engineering is a powerful strategy for regulating the performance of electrocatalysts towards many electrocatalytic reactions, while its impact on the nitrogen electroreduction has been largely unexplored. Herein, we demonstrate that structurally ordered body-centered cubic (BCC) PdCu nanoparticles can be adopted as active, selective, and stable electrocatalysts for ammonia synthesis. Specifically, the BCC PdCu exhibits excellent activity with a high NH3 yield of 35.7 µg h-1 mg-1 cat , Faradaic efficiency of 11.5 %, and high selectivity (no N2 H4 is detected) at -0.1 V versus reversible hydrogen electrode, outperforming its counterpart, face-centered cubic (FCC) PdCu, and most reported nitrogen reduction reaction (NRR) electrocatalysts. It also exhibits durable stability for consecutive electrolysis for five cycles. Density functional theory calculation reveals that strong orbital interactions between Pd and neighboring Cu sites in BCC PdCu obtained by structure engineering induces an evident correlation effect for boosting up the Pd 4d electronic activities for efficient NRR catalysis. Our findings open up a new avenue for designing active and stable electrocatalysts towards NRR.

14.
Angew Chem Int Ed Engl ; 59(21): 8066-8071, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32077188

RESUMO

Surface regulation is an effective strategy to improve the performance of catalysts, but it has been rarely demonstrated for nitrogen reduction reaction (NRR) to date. Now, surface-rough Rh2 Sb nanorod (RNR) and surface-smooth Rh2 Sb NR (SNR) were selectively created, and their performance for NRR was investigated. The high-index-facet bounded Rh2 Sb RNRs/C exhibit a high NH3 yield rate of 228.85±12.96 µg h-1 mg-1 Rh at -0.45 V versus reversible hydrogen electrode (RHE), outperforming the Rh2 Sb SNRs/C (63.07±4.45 µg h-1 mg-1 Rh ) and Rh nanoparticles/C (22.82±1.49 µg h-1 mg-1 Rh ), owing to the enhanced adsorption and activation of N2 on high-index facets. Rh2 Sb RNRs/C also show durable stability with negligible activity decay after 10 h of successive electrolysis. The present work demonstrates that surface regulation plays an important role in promoting NRR activity and provides a new strategy for creating efficient NRR electrocatalysts.

15.
Nano Lett ; 17(11): 6575-6582, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-28968496

RESUMO

Layered materials, e.g., graphene and transition metal (di)chalcogenides, holding great promises in nanoscale device applications have been extensively studied in fundamental chemistry, solid state physics and materials research areas. In parallel, layered oxides (e.g., Aurivillius and Ruddlesden-Popper phases) present an attractive class of materials both because of their rich physics behind and potential device applications. In this work, we report a novel layered oxide material with self-assembled layered supercell structure consisting of two mismatch-layered sublattices of [Bi3O3+δ] and [MO2]1.84 (M = Al/Mn, simply named BAMO), i.e., alternative layered stacking of two mutually incommensurate sublattices made of a three-layer-thick Bi-O slab and a one-layer-thick Al/Mn-O octahedra slab in the out-of-plane direction. Strong room-temperature ferromagnetic and piezoelectric responses as well as anisotropic optical property have been demonstrated with great potentials in various device applications. The realization of the novel BAMO layered supercell structure in this work has paved an avenue toward exploring and designing new materials with multifunctionalities.

16.
Nano Lett ; 16(6): 3936-43, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27186652

RESUMO

Metamaterials made of nanoscale inclusions or artificial unit cells exhibit exotic optical properties that do not exist in natural materials. Promising applications, such as super-resolution imaging, cloaking, hyperbolic propagation, and ultrafast phase velocities have been demonstrated based on mostly micrometer-scale metamaterials and few nanoscale metamaterials. To date, most metamaterials are created using costly and tedious fabrication techniques with limited paths toward reliable large-scale fabrication. In this work, we demonstrate the one-step direct growth of self-assembled epitaxial metal-oxide nanocomposites as a drastically different approach to fabricating large-area nanostructured metamaterials. Using pulsed laser deposition, we fabricated nanocomposite films with vertically aligned gold (Au) nanopillars (∼20 nm in diameter) embedded in various oxide matrices with high epitaxial quality. Strong, broad absorption features in the measured absorbance spectrum are clear signatures of plasmon resonances of Au nanopillars. By tuning their densities on selected substrates, anisotropic optical properties are demonstrated via angular dependent and polarization resolved reflectivity measurements and reproduced by full-wave simulations and effective medium theory. Our model predicts exotic properties, such as zero permittivity responses and topological transitions. Our studies suggest that these self-assembled metal-oxide nanostructures provide an exciting new material platform to control and enhance optical response at nanometer scales.

17.
ACS Nano ; 17(6): 5861-5870, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36920478

RESUMO

Thickness regulation of transition metal hydroxides/oxides nanosheets with superior catalytic properties represents a promising strategy to enhance catalytic performance, but it remains an enormous challenge to achieve precise control, especially when it comes to the ultrathin limit (several atomic layers). In this work, a facile strategy of alkylamine-confined growth is proposed for the synthesis of thickness-tunable metal hydroxide/oxide nanosheets. Specifically, ultrathin cobalt hydroxide and cobaltous oxide hybrid (Co(OH)2-CoO) nanosheets (Co-O NSs) with a thickness in the range of 2-6 nm (5-13 atomic layers) are synthesized by using alkylamines with different carbon chain lengths as the ligand to modulate vertical coordination ability. Co-O NSs with a thickness of 2 nm (Co-O NSs-2 nm) exhibit excellent oxygen evolution reaction (OER) performance with an overpotential of 278 mV at 10 mA/cm2. The maximized number of active sites including oxygen vacancies, optimal adsorption strength, and the highest electrical conductivity are considered as the potential factors contributing to the excellent OER performance of Co-O NSs-2 nm. This work holds great significance for the precise thickness-tunable synthesis of transition metal layered hydroxide nanosheets with modulated and improved catalytic performance.

18.
ACS Nano ; 16(9): 14885-14894, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-35998344

RESUMO

The physicochemical properties and catalytic performance of transition metals are highly phase-dependent. Ru-based nanomaterials are superior catalysts toward hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR), but studies are mostly limited to conventional hexagonal-close-packed (hcp) Ru, mainly arising from the difficulty in synthesizing Ru with pure face-centered-cubic (fcc) phase. Herein, we report a crystal-phase-dependent catalytic study of MoOx-modified Ru (MoOx-Ru fcc and MoOx-Ru hcp) for bifunctional HER and HOR. MoOx-Ru fcc is proven to outperform MoOx-Ru hcp in catalyzing both HER and HOR with much higher catalytic activity and more durable stability. The modification effect of MoOx gives rise to optimal adsorption of H and OH especially on fcc Ru, which thus has resulted in the superior catalytic performance. This work highlights the significance of phase engineering in constructing superior electrocatalysts and may stimulate more efforts on phase engineering of other metal-based materials for diversified applications.

19.
Sci Adv ; 8(9): eabl9271, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35235348

RESUMO

Realizing stable and efficient overall water splitting is highly desirable for sustainable and efficient hydrogen production yet challenging because of the rapid deactivation of electrocatalysts during the acidic oxygen evolution process. Here, we report that the single-site Pt-doped RuO2 hollow nanospheres (SS Pt-RuO2 HNSs) with interstitial C can serve as highly active and stable electrocatalysts for overall water splitting in 0.5 M H2SO4. The performance toward overall water splitting have surpassed most of the reported catalysts. Impressively, the SS Pt-RuO2 HNSs exhibit promising stability in polymer electrolyte membrane electrolyzer at 100 mA cm-2 during continuous operation for 100 hours. Detailed experiments reveal that the interstitial C can elongate Ru-O and Pt-O bonds, and the presence of SS Pt can readily vary the electronic properties of RuO2 and improve the OER activity by reducing the energy barriers and enhancing the dissociation energy of *O species.

20.
Adv Mater ; 33(50): e2004243, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33749035

RESUMO

Proton exchange membrane (PEM) water electrolyzers hold great significance for renewable energy storage and conversion. The acidic oxygen evolution reaction (OER) is one of the main roadblocks that hinder the practical application of PEM water electrolyzers. Highly active, cost-effective, and durable electrocatalysts are indispensable for lowering the high kinetic barrier of OER to achieve boosted reaction kinetics. To date, a wide spectrum of advanced electrocatalysts has been designed and synthesized for enhanced acidic OER performance, though Ir and Ru based nanostructures still represent the state-of-the-art catalysts. In this Progress Report, recent research progress in advanced electrocatalysts for improved acidic OER performance is summarized. First, fundamental understanding about acidic OER including reaction mechanisms and atomic understanding to acidic OER for rational design of efficient electrocatalysts are discussed. Thereafter, an overview of the progress in the design and synthesis of advanced acidic OER electrocatalysts is provided in terms of catalyst category, i.e., metallic nanostructures (Ir and Ru based), precious metal oxides, nonprecious metal oxides, and carbon based nanomaterials. Finally, perspectives to the future development of acidic OER are provided from the aspects of reaction mechanism investigation and more efficient electrocatalyst design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA