Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale ; 15(6): 2837-2842, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36688415

RESUMO

The interfacial state between the hole transport layer (HTL) and quantum dots (QDs) plays a crucial role in the optoelectronic performance of light-emitting diodes. Herein, we reported an efficient and bright green indium phosphide (InP) QD-based light-emitting diode (LED) by introducing a self-assembled monolayer of 4-bromo-2-fluorothiophenol (SAM-BFTP) molecule to improve interfacial charge transport in LED devices. The molecular dipole layer at the interface of the QD layer and HTL not only reduces the energy barrier of holes injected into QDs through vacuum energy level shift but also inhibits the fluorescence quenching of QDs caused by the HTL. Moreover, copper ions doped into phosphomolybdic acid (Cu:PMA) is selected as the hole injection layer (HIL) into the device system based on the SAM-BFTP molecule, and as a result, a green InP QD LED (QLED) with a maximum external quantum efficiency (EQE) of 8.46% and a luminance of 18 356 cd m-2 was realized. This work can inform and underpin the future development of InP-based QLEDs with concurrent high efficiency and brightness.

2.
ACS Appl Mater Interfaces ; 14(13): 15401-15406, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35316038

RESUMO

Indium phosphide (InP) quantum dots (QDs) have demonstrated great potential for light-emitting diode (LED) application because of their excellent optical properties and nontoxicity. However, the over performance of InP QDs still lags behind that of CdSe QDs, and one of main reasons is that the Zn traps in InP lattices can be formed through the cation exchange in the ZnSe shell growth process. Herein, we realized highly luminescent InP/ZnSe/ZnS QDs by constructing Se-rich shielding layers on the surfaces of InP cores, which simultaneously protect the InP cores from the invasion of Zn2+ into InP lattices and facilitate the ZnSe shell growth via the reaction between Zn2+ precursors and Se2- shielding layers. The as-synthesized green InP/ZnSe/ZnS QDs had a high photoluminescence quantum yield (PLQY) of up to 87%. The fabricated QLEDs present a peak external quantum efficiency of 6.2% with an improved efficiency roll-off at high luminance, which is 2 times higher than that of control devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA