Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.292
Filtrar
1.
Plant Cell ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38917246

RESUMO

Although the strigolactone (SL) signaling pathway and SL-mediated anthocyanin biosynthesis have been reported, the molecular association between SL signaling and anthocyanin biosynthesis remains unclear. In this study, we identified the SL signal transduction pathway associated with anthocyanin biosynthesis and the crosstalk between gibberellin (GA) and SL signaling in apple (Malus × domestica). ELONGATED HYPOCOTYL5 (HY5) acts as a key node integrating SL signaling and anthocyanin biosynthesis, and the SL response factor AGAMOUS-LIKE MADS-BOX9 (AGL9) promotes anthocyanin biosynthesis by activating HY5 transcription. The SL signaling repressor SUPPRESSOR OF MAX2 1-LIKE8 (SMXL8) interacts with AGL9 to form a complex that inhibits anthocyanin biosynthesis by downregulating HY5 expression. Moreover, the E3 ubiquitin ligase PROTEOLYSIS1 (PRT1) mediates the ubiquitination-mediated degradation of SMXL8, which is a key part of the SL signal transduction pathway associated with anthocyanin biosynthesis. In addition, the GA signaling repressor REPRESSOR-of-ga1-3-LIKE2a (RGL2a) mediates the crosstalk between GA and SL by disrupting the SMXL8-AGL9 interaction that represses HY5 transcription. Taken together, our study reveals the regulatory mechanism of SL-mediated anthocyanin biosynthesis and uncovers the role of SL-GA crosstalk in regulating anthocyanin biosynthesis in apple.

2.
Development ; 150(20)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36975381

RESUMO

Methionine is important for intestinal development and homeostasis in various organisms. However, the underlying mechanisms are poorly understood. Here, we demonstrate that the methionine adenosyltransferase gene Mat2a is essential for intestinal development and that the metabolite S-adenosyl-L-methionine (SAM) plays an important role in intestinal homeostasis. Intestinal epithelial cell (IEC)-specific knockout of Mat2a exhibits impaired intestinal development and neonatal lethality. Mat2a deletion in the adult intestine reduces cell proliferation and triggers IEC apoptosis, leading to severe intestinal epithelial atrophy and intestinal inflammation. Mechanistically, we reveal that SAM maintains the integrity of differentiated epithelium and protects IECs from apoptosis by suppressing the expression of caspases 3 and 8 and their activation. SAM supplementation improves the defective intestinal epithelium and reduces inflammatory infiltration sequentially. In conclusion, our study demonstrates that methionine metabolism and its intermediate metabolite SAM play essential roles in intestinal development and homeostasis in mice.


Assuntos
Metionina Adenosiltransferase , S-Adenosilmetionina , Camundongos , Animais , S-Adenosilmetionina/metabolismo , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Mucosa Intestinal/metabolismo , Metionina , Suplementos Nutricionais
3.
Proc Natl Acad Sci U S A ; 120(3): e2207080119, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36623198

RESUMO

The electrochemical conversion of waste nitrate (NO3-) to valuable ammonia (NH3) is an economical and environmentally friendly technology for sustainable NH3 production. It is beneficial for environmental nitrogen pollution management and is also an appealing alternative to the current Haber-Bosch process for NH3 production. However, owing to the competing hydrogen evolution reaction, it is necessary to design highly efficient and stable electrocatalysts with high selectivity. Herein, we report a rational design of Fe nanoparticles wrapped in N-doped carbon (Fe@N10-C) as a high NH3 selective and efficient electrocatalyst using a metal-organic framework precursor. We constructed a catalyst with new active sites by doping with nitrogen, which activated neighboring carbon atoms and enhanced metal-to-carbon electron transfer, resulting in high catalytic activity. These doped N sites play a key role in the NO3- electroreduction. As a result, the Fe@N10-C nanoparticles with optimal doping of N demonstrated remarkable performance, with a record-high NO3- removal capacity of 125.8 ± 0.5 mg N gcat-1 h-1 and nearly 100 % (99.7 ± 0.1%) selectivity. The catalyst also delivers an impressive NH3 production rate of 2647.7 µg h-1 cm-2 and high faradaic efficiency of 91.8 ± 0.1%. This work provides a new route for N-doped carbon-iron catalysis application and paves the way for addressing energy and environmental issues.

4.
Am J Pathol ; 194(2): 238-252, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37995836

RESUMO

Substance P (SP) is a neuropeptide released by neurons and participates in various biological processes, including inflammation. M2 macrophages are major immune cells associated with type 2 inflammation in asthma. This study investigated the effect of SP on macrophage phenotype in pediatric asthma and the underpinning factors. Asthmatic children exhibited an increased level of SP, along with a higher proportion of M2 macrophages in their bronchoalveolar lavage fluid. Flow cytometry revealed that SP treatment enhanced the M2 polarization of 12-O-tetradecanoylphorbol 13-acetate-treated THP-1 cells (macrophages) in vitro. By contrast, the administration of a neutralizing antibody of SP reduced the M2 macrophage population, mitigated inflammatory cell infiltration in mouse lung tissues, and decreased the population of immune cells in the mouse bronchoalveolar lavage fluid. SP up-regulated the expression of STAT6, which, in turn, activated the transcription of lymphocyte cytosolic protein 2 (LCP2). The population of macrophages and allergic inflammatory responses in mice were reduced by STAT6 inhibition but restored by LCP2 overexpression. Collectively, the present study demonstrated that SP sustains M2 macrophage predominance and allergic inflammation in pediatric asthma by enhancing STAT6-dependent transcription activation of LCP2.


Assuntos
Asma , Substância P , Criança , Humanos , Camundongos , Animais , Substância P/farmacologia , Ativação Transcricional , Asma/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo , Linfócitos/metabolismo , Fator de Transcrição STAT6 , Ativação de Macrófagos
5.
Am J Pathol ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38897538

RESUMO

Accumulating evidence has substantiated the potential of ambient particulate matter (PM) to elicit detrimental health consequences in the respiratory system, notably airway inflammation. Macrophages, a pivotal component of the innate immune system, assume a crucial function in responding to exogenous agents. However, the roles and detailed mechanisms in regulating PM-induced airway inflammation remain unclear. Our study revealed that PM had the ability to stimulate the formation of macrophage extracellular traps (METs) both in vitro and in vivo. This effect was found to be dependent on peptidylarginine deiminase type 4 (PAD4)-mediated histone citrullination. Additionally, reactive oxygen species were also found to be involved in the formation of PM-induced METs, in parallel with PAD4. Genetic deletion of PAD4 in macrophages resulted in an up-regulation of inflammatory cytokine expression. Moreover, mice with PAD4-specific knockout in myeloid cells exhibited exacerbated PM-induced airway inflammation. Mechanistically, inhibition of METs suppressed the phagocytic ability in macrophages, leading to airway epithelial injuries and an aggravated PM-induced airway inflammation. The present study demonstrates that METs play a crucial role in promoting the phagocytosis and clearance of PM by macrophages, thereby suppressing airway inflammation. Furthermore, it suggests that activation of METs may represent a novel therapeutic strategy for PM-related airway disorders.

6.
FASEB J ; 38(12): e23735, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38860936

RESUMO

Identification of potential key targets of melanoma, a fatal skin malignancy, is critical to the development of new cancer therapies. Lysine methyltransferase 2A (KMT2A) promotes melanoma growth by activating the human telomerase reverse transcriptase (hTERT) signaling pathway; however, the exact mechanism remains elusive. This study aimed to reveal new molecular targets that regulate KMT2A expression and melanoma growth. Using biotin-streptavidin-agarose pull-down and proteomics, we identified Damage-specific DNA-binding protein 2 (DDB2) as a KMT2A promoter-binding protein in melanoma cells and validated its role as a regulator of KMT2A/hTERT signaling. DDB2 knockdown inhibited the expression of KMT2A and hTERT and inhibited the growth of melanoma cells in vitro. Conversely, overexpression of DDB2 activated the expression of KMT2A and promoted the growth of melanoma cells. Additionally, we demonstrated that DDB2 expression was higher in tumor tissues of patients with melanoma than in corresponding normal tissues and was positively correlated with KMT2A expression. Kaplan-Meier analysis showed a poor prognosis in patients with high levels of DDB2 and KMT2A. Overall, our data suggest that DDB2 promotes melanoma cell growth through the transcriptional regulation of KMT2A expression and predicts poor prognosis. Therefore, targeting DDB2 may regulate the effects of KMT2A on melanoma growth and progression, providing a new potential therapeutic strategy for melanoma.


Assuntos
Proliferação de Células , Proteínas de Ligação a DNA , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase , Melanoma , Proteína de Leucina Linfoide-Mieloide , Humanos , Melanoma/genética , Melanoma/patologia , Melanoma/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Prognóstico , Linhagem Celular Tumoral , Feminino , Masculino , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35101982

RESUMO

Ammonia (NH3) is an ideal carbon-free power source in the future sustainable hydrogen economy for growing energy demand. The electrochemical nitrate reduction reaction (NO3-RR) is a promising approach for nitrate removal and NH3 production at ambient conditions, but efficient electrocatalysts are lacking. Here, we present a metal-organic framework (MOF)-derived cobalt-doped Fe@Fe2O3 (Co-Fe@Fe2O3) NO3-RR catalyst for electrochemical energy production. This catalyst has a nitrate removal capacity of 100.8 mg N gcat-1 h-1 and an ammonium selectivity of 99.0 ± 0.1%, which was the highest among all reported research. In addition, NH3 was produced at a rate of 1,505.9 µg h-1 cm-2, and the maximum faradaic efficiency was 85.2 ± 0.6%. Experimental and computational results reveal that the high performance of Co-Fe@Fe2O3 results from cobalt doping, which tunes the Fe d-band center, enabling the adsorption energies for intermediates to be modulated and suppressing hydrogen production. Thus, this study provides a strategy in the design of electrocatalysts in electrochemical nitrate reduction.

8.
Proc Natl Acad Sci U S A ; 119(29): e2123450119, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858301

RESUMO

Efficient n = O bond activation is crucial for the catalytic reduction of nitrogen compounds, which is highly affected by the construction of active centers. In this study, n = O bond activation was achieved by a single-atom catalyst (SAC) with phosphorus anchored on a Co active center to form intermediate N-species for further hydrogenation and reduction. Unique phosphorus-doped discontinuous active sites exhibit better n = O activation performance than conventional N-cooperated single-atom sites, with a high Faradic efficiency of 92.0% and a maximum ammonia yield rate of 433.3 µg NH4·h-1·cm-2. This approach of constructing environmental sites through heteroatom modification significantly improves atom efficiency and will guide the design of future functional SACs with wide-ranging applications.

9.
Proc Natl Acad Sci U S A ; 119(12): e2116776119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35294289

RESUMO

Shigella flexneri, a gram-negative bacterium, is the major culprit of bacterial shigellosis and causes a large number of human infection cases and deaths worldwide annually. For evading the host immune response during infection, S. flexneri secrets two highly similar E3 ligases, IpaH1.4 and IpaH2.5, to subvert the linear ubiquitin chain assembly complex (LUBAC) of host cells, which is composed of HOIP, HOIL-1L, and SHARPIN. However, the detailed molecular mechanism underpinning the subversion of the LUBAC by IpaH1.4/2.5 remains elusive. Here, we demonstrated that IpaH1.4 can specifically recognize HOIP and HOIL-1L through its leucine-rich repeat (LRR) domain by binding to the HOIP RING1 domain and HOIL-1L ubiquitin-like (UBL) domain, respectively. The determined crystal structures of IpaH1.4 LRR/HOIP RING1, IpaH1.4 LRR/HOIL-1L UBL, and HOIP RING1/UBE2L3 complexes not only elucidate the binding mechanisms of IpaH1.4 with HOIP and HOIL-1L but also unveil that the recognition of HOIP by IpaH1.4 can inhibit the E2 binding of HOIP. Furthermore, we demonstrated that the interaction of IpaH1.4 LRR with HOIP RING1 or HOIL-1L UBL is essential for the ubiquitination of HOIP or HOIL-1L in vitro as well as the suppression of NF-κB activation by IpaH1.4 in cells. In summary, our work elucidated that in addition to inducing the proteasomal degradation of LUBAC, IpaH1.4 can also inhibit the E3 activity of LUBAC by blocking its E2 loading and/or disturbing its stability, thereby providing a paradigm showing how a bacterial E3 ligase adopts multiple tactics to subvert the key LUBAC of host cells.


Assuntos
Shigella flexneri , Ubiquitina-Proteína Ligases , Humanos , NF-kappa B/metabolismo , Shigella flexneri/genética , Shigella flexneri/metabolismo , Transdução de Sinais , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
10.
BMC Genomics ; 25(1): 601, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877407

RESUMO

BACKGROUND: The herbaceous peony (Paeonia lactiflora Pall.) is extensively cultivated in China due to its root being used as a traditional Chinese medicine known as 'Radix Paeoniae Alba'. In recent years, it has been discovered that its seeds incorporate abundant unsaturated fatty acids, thereby presenting a potential new oilseed plant. Surprisingly, little is known about the full-length transcriptome sequencing of Paeonia lactiflora, limiting research into its gene function and molecular mechanisms. RESULTS: A total of 484,931 Reads of Inserts (ROI) sequences and 1,455,771 full-Length non-chimeric reads (FLNC) sequences were obtained for CDS prediction, TF analysis, SSR analysis and lncRNA identification. In addition, gene function annotation and gene structure analysis were performed. A total of 4905 transcripts were related to lipid metabolism biosynthesis pathway, belonging to 28 enzymes. We use these data to identify 10 oleosin (OLE) and 5 diacylglycerol acyltransferase (DGAT) gene members after de-redundancy. The analysis of physicochemical properties and secondary structure showed them similarity in gene family respectively. The phylogenetic analysis showed that the distribution of OLE and DGAT family members was roughly the same as that of Arabidopsis. Quantitative real-time polymerase chain reaction (qRT-PCR) analyses revealed expression changes in different seed development stages, and showed a trend of increasing and then decreasing. CONCLUSION: In summary, these results provide new insights into the molecular mechanism of triacylglycerol (TAG) biosynthesis and storage during the seedling stage in Paeonia lactiflora. It provides theoretical references for selecting and breeding oil varieties and understanding the functions of oil storage as well as lipid synthesis related genes in Paeonia lactiflora.


Assuntos
Paeonia , Sementes , Transcriptoma , Triglicerídeos , Paeonia/genética , Paeonia/metabolismo , Paeonia/crescimento & desenvolvimento , Sementes/genética , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Triglicerídeos/biossíntese , Filogenia , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Genes de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Metabolismo dos Lipídeos/genética
11.
Br J Haematol ; 204(4): 1307-1324, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462771

RESUMO

Multiple myeloma (MM) is the second most common malignant haematological disease with a poor prognosis. The limit therapeutic progress has been made in MM patients with cancer relapse, necessitating deeper research into the molecular mechanisms underlying its occurrence and development. A genome-wide CRISPR-Cas9 loss-of-function screening was utilized to identify potential therapeutic targets in our research. We revealed that COQ2 plays a crucial role in regulating MM cell proliferation and lipid peroxidation (LPO). Knockout of COQ2 inhibited cell proliferation, induced cell cycle arrest and reduced tumour growth in vivo. Mechanistically, COQ2 promoted the activation of the MEK/ERK cascade, which in turn stabilized and activated MYC protein. Moreover, we found that COQ2-deficient MM cells increased sensitivity to the LPO activator, RSL3. Using an inhibitor targeting COQ2 by 4-CBA enhanced the sensitivity to RSL3 in primary CD138+ myeloma cells and in a xenograft mouse model. Nevertheless, co-treatment of 4-CBA and RSL3 induced cell death in bortezomib-resistant MM cells. Together, our findings suggest that COQ2 promotes cell proliferation and tumour growth through the activation of the MEK/ERK/MYC axis and targeting COQ2 could enhance the sensitivity to ferroptosis in MM cells, which may be a promising therapeutic strategy for the treatment of MM patients.


Assuntos
Mieloma Múltiplo , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Peroxidação de Lipídeos , Quinases de Proteína Quinase Ativadas por Mitógeno/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico
12.
J Gene Med ; 26(1): e3609, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37849429

RESUMO

BACKGROUND: Liver cancer, a common malignancy within the digestive system, presents with a particularly grim prognosis. Within the immune microenvironment, the role of natural killer (NK) cells in liver cancer remains unclear. METHODS: We sourced data on clinical parameters and gene expressions for liver cancer patients from The Cancer Genome Atlas Program database and carried out all analyses using R software and its relevant codes. RESULTS: In our research, we delved into the genes intertwined with NK cells in hepatocellular carcinoma (HCC). Leveraging the QUANTISEQ and MCPCOUNTER algorithms to quantify NK cells, we spotlighted genes vital to the recruitment of NK cells. Among these genes, GDE1, WDFY3, DNAJB14, PKD2, DGAT2, SGMS2 and MKNK2 showed a strong correlation with patient outcomes. We also mapped out the single-cell expression trajectories of these genes within the HCC milieu. From our findings, SGMS2 emerged as a key gene warranting further scrutiny. Our in-depth analysis of SGMS2 shed light on its influence over specific biological pathways, its contribution to the immune landscape and its role in genomic instability within HCC. Drawing from this, we formulated a predictive model rooted in SGMS2-associated genes. This model showcased remarkable precision across both training and validation cohorts. CONCLUSIONS: Overall, our investigation underscored the profound implications of SGMS2, a gene pivotal to NK cell infiltration, in the landscape of HCC, thereby positioning it as a potential linchpin in oncological strategies.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Células Matadoras Naturais/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Microambiente Tumoral/genética
13.
Chembiochem ; 25(4): e202300633, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-37961028

RESUMO

Ribonucleic acid (RNA) plays a pivotal role in gene regulation and protein biosynthesis. Interfering the physiological function of key RNAs to induce cell apoptosis holds great promise for cancer treatment. Many RNA-targeted anti-cancer strategies have emerged continuously. Among them, RNA interference (RNAi) has been recognized as a promising therapeutic modality for various disease treatments. Nevertheless, the primary obstacle in siRNA delivery-escaping the endosome and crossing the plasma membrane severely impedes its therapeutic potential. Thus far, a variety of nanosystems as well as carrier-free bioconjugation for siRNA delivery have been developed and employed to enhance the drug delivery and anti-tumor efficiency. Besides, the use of small molecules to target specific RNA structures and disrupt their function, along with the covalent modification of RNA, has also drawn tremendous attention recently owing to high therapeutic efficacy. In this review, we will provide an overview of recent progress in RNA-targeted cancer therapy including various siRNA delivery strategies, RNA-targeting small molecules, and newly emerged covalent RNA modification. Finally, challenges and future perspectives faced in this research field will be discussed.


Assuntos
Neoplasias , Humanos , RNA Interferente Pequeno/química , Interferência de RNA , Neoplasias/tratamento farmacológico , Neoplasias/genética , Sistemas de Liberação de Medicamentos , Regulação da Expressão Gênica
14.
Brief Bioinform ; 23(2)2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35224615

RESUMO

The lack of a reliable and easy-to-operate screening pipeline for disease-related noncoding RNA regulatory axis is a problem that needs to be solved urgently. To address this, we designed a hybrid pipeline, disease-related lncRNA-miRNA-mRNA regulatory axis prediction from multiomics (DLRAPom), to identify risk biomarkers and disease-related lncRNA-miRNA-mRNA regulatory axes by adding a novel machine learning model on the basis of conventional analysis and combining experimental validation. The pipeline consists of four parts, including selecting hub biomarkers by conventional bioinformatics analysis, discovering the most essential protein-coding biomarkers by a novel machine learning model, extracting the key lncRNA-miRNA-mRNA axis and validating experimentally. Our study is the first one to propose a new pipeline predicting the interactions between lncRNA and miRNA and mRNA by combining WGCNA and XGBoost. Compared with the methods reported previously, we developed an Optimized XGBoost model to reduce the degree of overfitting in multiomics data, thereby improving the generalization ability of the overall model for the integrated analysis of multiomics data. With applications to gestational diabetes mellitus (GDM), we predicted nine risk protein-coding biomarkers and some potential lncRNA-miRNA-mRNA regulatory axes, which all correlated with GDM. In those regulatory axes, the MALAT1/hsa-miR-144-3p/IRS1 axis was predicted to be the key axis and was identified as being associated with GDM for the first time. In short, as a flexible pipeline, DLRAPom can contribute to molecular pathogenesis research of diseases, effectively predicting potential disease-related noncoding RNA regulatory networks and providing promising candidates for functional research on disease pathogenesis.


Assuntos
MicroRNAs , RNA Longo não Codificante , Biologia Computacional , Redes Reguladoras de Genes , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética
15.
J Transl Med ; 22(1): 133, 2024 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310229

RESUMO

BACKGROUND: Oxaliplatin resistance usually leads to therapeutic failure and poor prognosis in colorectal cancer (CRC), while the underlying mechanisms are not yet fully understood. Metabolic reprogramming is strongly linked to drug resistance, however, the role and mechanism of metabolic reprogramming in oxaliplatin resistance remain unclear. Here, we aim to explore the functions and mechanisms of purine metabolism on the oxaliplatin-induced apoptosis of CRC. METHODS: An oxaliplatin-resistant CRC cell line was generated, and untargeted metabolomics analysis was conducted. The inosine 5'-monophosphate dehydrogenase type II (IMPDH2) expression in CRC cell lines was determined by quantitative real-time polymerase chain reaction (qPCR) and western blotting analysis. The effects of IMPDH2 overexpression, knockdown and pharmacological inhibition on oxaliplatin resistance in CRC were assessed by flow cytometry analysis of cell apoptosis in vivo and in vitro. RESULTS: Metabolic analysis revealed that the levels of purine metabolites, especially guanosine monophosphate (GMP), were markedly elevated in oxaliplatin-resistant CRC cells. The accumulation of purine metabolites mainly arose from the upregulation of IMPDH2 expression. Gene set enrichment analysis (GSEA) indicated high IMPDH2 expression in CRC correlates with PURINE_METABOLISM and MULTIPLE-DRUG-RESISTANCE pathways. CRC cells with higher IMPDH2 expression were more resistant to oxaliplatin-induced apoptosis. Overexpression of IMPDH2 in CRC cells resulted in reduced cell death upon treatment with oxaliplatin, whereas knockdown of IMPDH2 led to increased sensitivity to oxaliplatin through influencing the activation of the Caspase 7/8/9 and PARP1 proteins on cell apoptosis. Targeted inhibition of IMPDH2 by mycophenolic acid (MPA) or mycophenolate mofetil (MMF) enhanced cell apoptosis in vitro and decreased in vivo tumour burden when combined with oxaliplatin treatment. Mechanistically, the Wnt/ß-catenin signalling was hyperactivated in oxaliplatin-resistant CRC cells, and a reciprocal positive regulatory mechanism existed between Wnt/ß-catenin and IMPDH2. Blocking the Wnt/ß-catenin pathway could resensitize resistant cells to oxaliplatin, which could be restored by the addition of GMP. CONCLUSIONS: IMPDH2 is a predictive biomarker and therapeutic target for oxaliplatin resistance in CRC.


Assuntos
Neoplasias Colorretais , beta Catenina , Humanos , Apoptose , beta Catenina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , IMP Desidrogenase/genética , IMP Desidrogenase/metabolismo , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Oxirredutases/genética , Oxirredutases/metabolismo , Via de Sinalização Wnt
16.
J Transl Med ; 22(1): 595, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926732

RESUMO

BACKGROUND: Variations exist in the response of patients with Crohn's disease (CD) to ustekinumab (UST) treatment, but the underlying cause remains unknown. Our objective was to investigate the involvement of immune cells and identify potential biomarkers that could predict the response to interleukin (IL) 12/23 inhibitors in patients with CD. METHODS: The GSE207022 dataset, which consisted of 54 non-responders and 9 responders to UST in a CD cohort, was analyzed. Differentially expressed genes (DEGs) were identified and subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Least absolute shrinkage and selection operator (LASSO) regression was used to screen the most powerful hub genes. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the predictive performances of these genes. Single-sample Gene Set Enrichment Analysis (ssGSEA) was used to estimate the proportions of immune cell types. These significantly altered genes were subjected to cluster analysis into immune cell-related infiltration. To validate the reliability of the candidates, patients prescribed UST as a first-line biologic in a prospective cohort were included as an independent validation dataset. RESULTS: A total of 99 DEGs were identified in the integrated dataset. GO and KEGG analyses revealed significant enrichment of immune response pathways in patients with CD. Thirteen genes (SOCS3, CD55, KDM5D, IGFBP5, LCN2, SLC15A1, XPNPEP2, HLA-DQA2, HMGCS2, DDX3Y, ITGB2, CDKN2B and HLA-DQA1), which were primarily associated with the response versus nonresponse patients, were identified and included in the LASSO analysis. These genes accurately predicted treatment response, with an area under the curve (AUC) of 0.938. T helper cell type 1 (Th1) cell polarization was comparatively strong in nonresponse individuals. Positive connections were observed between Th1 cells and the LCN2 and KDM5D genes. Furthermore, we employed an independent validation dataset and early experimental verification to validate the LCN2 and KDM5D genes as effective predictive markers. CONCLUSIONS: Th1 cell polarization is an important cause of nonresponse to UST therapy in patients with CD. LCN2 and KDM5D can be used as predictive markers to effectively identify nonresponse patients. TRIAL REGISTRATION: Trial registration number: NCT05542459; Date of registration: 2022-09-14; URL: https://www. CLINICALTRIALS: gov .


Assuntos
Biologia Computacional , Doença de Crohn , RNA Mensageiro , Ustekinumab , Adulto , Feminino , Humanos , Masculino , Análise por Conglomerados , Biologia Computacional/métodos , Doença de Crohn/genética , Doença de Crohn/tratamento farmacológico , Perfilação da Expressão Gênica , Ontologia Genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Estudos Prospectivos , Reprodutibilidade dos Testes , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Curva ROC , Transcriptoma/genética , Ustekinumab/uso terapêutico , Ustekinumab/farmacologia
17.
J Transl Med ; 22(1): 65, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229122

RESUMO

BACKGROUND: Accurate clinical structural variant (SV) calling is essential for cancer target identification and diagnosis but has been historically challenging due to the lack of ground truth for clinical specimens. Meanwhile, reduced clinical-testing cost is the key to the widespread clinical utility. METHODS: We analyzed massive data from tumor samples of 476 patients and developed a computational framework for accurate and cost-effective detection of clinically-relevant SVs. In addition, standard materials and classical experiments including immunohistochemistry and/or fluorescence in situ hybridization were used to validate the developed computational framework. RESULTS: We systematically evaluated the common algorithms for SV detection and established an expert-reviewed SV call set of 1,303 tumor-specific SVs with high-evidence levels. Moreover, we developed a random-forest-based decision model to improve the true positive of SVs. To independently validate the tailored 'two-step' strategy, we utilized standard materials and classical experiments. The accuracy of the model was over 90% (92-99.78%) for all types of data. CONCLUSION: Our study provides a valuable resource and an actionable guide to improve cancer-specific SV detection accuracy and clinical applicability.


Assuntos
Genômica , Neoplasias , Humanos , Benchmarking , Análise Custo-Benefício , Hibridização in Situ Fluorescente , Neoplasias/diagnóstico , Neoplasias/genética , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala
18.
J Med Virol ; 96(3): e29454, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38445768

RESUMO

Various vaccines have been challenged by SARS-CoV-2 variants. Here, we reported a yeast-derived recombinant bivalent vaccine (Bivalent wild-type [Wt]+De) based on the wt and Delta receptor-binding domain (RBD). Yeast derived RBD proteins based on the wt and Delta mutant were used as the prime vaccine. It was found that, in the presence of aluminium hydroxide (Alum) and unmethylated CpG-oligodeoxynucleotides (CpG) adjuvants, more cross-protective immunity against SARS-CoV-2 prototype and variants were elicited by bivalent vaccine than monovalent wtRBD or Delta RBD. Furthermore, a heterologous boosting strategy consisting of two doses of bivalent vaccines followed by one dose adenovirus vectored vaccine exhibited cross-neutralization capacity and specific T cell responses against Delta and Omicron (BA.1 and BA.4/5) variants in mice, superior to a homologous vaccination strategy. This study suggested that heterologous prime-boost vaccination with yeast-derived bivalent protein vaccine could be a potential approach to address the challenge of emerging variants.


Assuntos
COVID-19 , Vacinas , Animais , Camundongos , Vacinas Combinadas , Proteínas Fúngicas , Saccharomyces cerevisiae/genética , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinação
19.
Toxicol Appl Pharmacol ; 483: 116831, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38266873

RESUMO

The detrimental impact of heavy metals on cardiovascular well-being is a global concern, and engaging in suitable physical activity has been shown to confer cardiovascular advantage. Nevertheless, the potential of exercise to mitigate the deleterious effects of heavy metals on stroke remains uncertain. We conducted a cross-sectional survey to assess the influence of blood cadmium and blood lead on stroke occurrence, while also examining the role of physical activity. Weighted multivariate regression analysis was employed to examine the potential correlation, while subgroup and interaction analyses were used to investigate the sensitivity and robustness of the results. After controlling risk factors, it revealed a positive correlation between blood cadmium and lead levels and the occurrence of stroke. Specifically, a 50% increase in blood cadmium was associated with a 28% increase in stroke incidence, while a 50% increase in blood lead was associated with a 47% increase in stroke incidence. To estimate the non-linear relationship, we employed restricted cubic models. The results demonstrate a gradual decrease in the slope of the model curve as the intensity of physical activity increases, implying that engaging in physical activity may contribute to a reduction in the occurrence of stroke caused by blood cadmium and lead. Our findings suggest that blood cadmium and lead could be considered an autonomous risk factor for stroke within the general population of the United States. Moreover, engaging in physical activity has the potential to mitigate the potential detrimental consequences associated with exposure to heavy metals.


Assuntos
Metais Pesados , Acidente Vascular Cerebral , Humanos , Estados Unidos/epidemiologia , Cádmio/toxicidade , Chumbo/toxicidade , Inquéritos Nutricionais , Estudos Transversais , Metais Pesados/toxicidade , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/prevenção & controle
20.
Mol Psychiatry ; 28(11): 4842-4852, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37696874

RESUMO

Sex differences are pervasive in schizophrenia (SCZ), but the extent and magnitude of DNA methylation (DNAm) changes underlying these differences remain uncharacterized. In this study, sex-stratified differential DNAm analysis was performed in postmortem brain samples from 117 SCZ and 137 controls, partitioned into discovery and replication datasets. Three differentially methylated positions (DMPs) were identified (adj.p < 0.05) in females and 29 DMPs in males without overlap between them. Over 81% of these sex-stratified DMPs were directionally consistent between sexes but with different effect sizes. Females experienced larger magnitude of DNAm changes and more DMPs (based on data of equal sample size) than males, contributing to a higher dysregulation burden of DNAm in females SCZ. Additionally, despite similar proportions of female-related DMPs (fDMPs, 8%) being under genetic control compared with males (10%), significant enrichment of DMP-related single nucleotide polymorphisms (SNPs) in signals of genome-wide association studies was identified only in fDMPs. One DMP in each sex connected the SNPs and gene expression of CALHM1 in females and CCDC149 in males. PPI subnetworks revealed that both female- and male-related differential DNAm interacted with synapse-related dysregulation. Immune-related pathways were unique for females and neuron-related pathways were associated with males. This study reveals remarkable quantitative differences in DNAm-related sexual dimorphism in SCZ and that females have a higher dysregulation burden of SCZ-associated DNAm than males.


Assuntos
Metilação de DNA , Esquizofrenia , Humanos , Masculino , Feminino , Metilação de DNA/genética , Esquizofrenia/genética , Esquizofrenia/metabolismo , Epigênese Genética , Estudo de Associação Genômica Ampla , Sexismo , Encéfalo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA