Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 40(39): 20797-20810, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39287604

RESUMO

This study has focused on adjusting sensing environment from basic to neutral pH and improve sensing performance by doping electrodeposited gold (Au) with metal oxide for nonenzymatic glucose measurements in forming a Schottky interface for superior glucose sensing with detailed analysis for the sensing mechanism. The prepared sensor also holds the ability to measure pH with the identical electrospun metal oxide-electrodeposited Au, which composed a dual sensor (glucose and pH sensor) through applying chronoamperometry and open circuit potential methods. The rhodium oxide nanocoral structure was fabricated with an electrospinning precursor solution, followed by a calcination process, and it was mixed with electrodeposited nanocoral gold to form the Schottky interface by constructing a p-n type heterogeneous junction for improved sensitivity in glucose detection. The prepared materials were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectrometry (XPS), etc. The prepared materials were used for both pH responsive testing and amperometric glucose measurements. The rhodium oxide nanocoral doped gold demonstrated a sensitivity of 3.52 µA mM-1 cm-2 and limit of detection of 20 µM with linear range up to 3 mM glucose concentration compared to solely electrodeposited gold for a sensitivity of 0.46 µA mM-1 cm-2 and a limit of detection of 450 µM. The Mott-Schottky method was used for the analysis of an electron transfer process from noble metal to metal oxide to electrolyte in demonstrating the improved sensitivity at neutral pH for glucose measurements due to the Schottky barrier adjustment mechanism at an applied flat band potential of 0.3 V. This work opens a new venue in illustrating the metal oxide/metal materials in the glucose neutral response mechanism. In the end, human serum samples were tested against current commercial glucose meter to certify the accuracy of the proposed sensor.


Assuntos
Ouro , Ródio , Humanos , Concentração de Íons de Hidrogênio , Ouro/química , Ródio/química , Glicemia/análise , Glucose/análise , Glucose/química , Técnicas Eletroquímicas/métodos , Óxidos/química , Soluções Tampão , Técnicas Biossensoriais/métodos
2.
J Fungi (Basel) ; 9(5)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37233307

RESUMO

Soil fungal community characteristics of alpine timberlines are unclear. In this study, soil fungal communities in five vegetation zones across timberlines on the south and north slopes of Sejila Mountain in Tibet, China were investigated. The results show that the alpha diversity of soil fungi was not different between the north- and south-facing timberlines or among the five vegetation zones. Archaeorhizomyces (Ascomycota) was a dominant genus at the south-facing timberline, whereas the ectomycorrhizal genus Russula (Basidiomycota) decreased with decreasing Abies georgei coverage and density at the north-facing timberline. Saprotrophic soil fungi were dominant, but their relative abundance changed little among the vegetation zones at the south timberline, whereas ectomycorrhizal fungi decreased with tree hosts at the north timberline. Soil fungal community characteristics were related to coverage and density, soil pH and ammonium nitrogen at the north timberline, whereas they had no associations with the vegetation and soil factors at the south timberline. In conclusion, timberline and A. georgei presence exerted apparent influences on the soil fungal community structure and function in this study. The findings may enhance our understanding of the distribution of soil fungal communities at the timberlines of Sejila Mountain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA