Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Adv Res ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38609050

RESUMO

INTRODUCTION: It is estimated that 90% of hyperuricemia cases are attributed to the inability to excrete uric acid (UA). The two main organs in charge of excreting UA are the kidney (70%) and intestine (30%). Previous studies have reported that punicalagin (PU) could protect against kidney and intestinal damages, which makes it a potential candidate for alleviating hyperuricemia. However, the effects and deeper action mechanisms of PU for managing hyperuricemia are still unknown. OBJECTIVE: To investigate the effect and action mechanisms of PU for ameliorating hyperuricemia. METHODS: The effects and action mechanisms of PU on hyperuricemia were assessed using a hyperuricemia mice model. Phenotypic parameters, metabolomics analysis, and 16S rRNA sequencing were applied to explore the effect and fundamental action mechanisms inside the kidney and intestine of PU for improving hyperuricemia. RESULTS: PU administration significantly decreased elevated serum uric acid (SUA) levels in hyperuricemia mice, and effectively alleviated the kidney and intestinal damage caused by hyperuricemia. In the kidney, PU down-regulated the expression of UA resorption protein URAT1 and GLUT9, while up-regulating the expression of UA excretion protein ABCG2 and OAT1 as mediated via the activation of MAKP/NF-κB in hyperuricemia mice. Additionally, PU attenuated renal glycometabolism disorder, which contributed to improving kidney dysfunction and inflammation. Similarly, PU increased UA excretion protein expression via inhibiting MAKP/NF-κB activation in the intestine of hyperuricemia mice. Furthermore, PU restored gut microbiota dysbiosis in hyperuricemia mice. CONCLUSION: This research revealed the ameliorating impacts of PU on hyperuricemia by restoring kidney and intestine damage in hyperuricemia mice, and to be considered for the development of nutraceuticals used as UA-lowering agent.

2.
Adv Colloid Interface Sci ; 311: 102829, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36603300

RESUMO

Nanotechnology has opened a new frontier in recent years, capable of providing new ways of controlling and structuring products with greater market value and offering significant opportunities for the development of innovative applications in food processing, preservation, and packaging. Macroalgae (MAG) are the major photoautotrophic group of living beings known as a potential source of secondary metabolites, namely phenolic compounds, pigments, and polysaccharides. Biosynthesis based on the abilities of MAG as "nanobiofactories" targets the use of algal secondary metabolites as reducing agents to stabilize nanoparticles (NPs). Nowadays, most of the studies are focused on the use of metal (Ag, Au) and metal-oxide (CuO, ZnO) NPs derived from algae. The eco-friendly biosynthesis of metal NPs reduces the cost and production time and increases their biocompatibility, due to the presence of bioactive compounds in MAG, making them suitable for a wide variety of applications. These compounds have been attributed to the antimicrobial and antioxidant properties responsible for their application through innovative technologies such as nanoencapsulation, nanocomposites, or biosensors in the food industry. Nevertheless, toxicity is a key factor that should be considered, so the applicable regulation needs to guarantee the safe use of metal NPs. Consequently, the aim of this review will be to compile the available information on MAG-mediated metal NPs, their biosynthesis, and potential food applications.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Alga Marinha , Óxido de Zinco , Metais , Alimentos , Plantas
3.
Curr Res Food Sci ; 6: 100441, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36756001

RESUMO

Ganoderma neo-japonicum Imazeki is a rare medicinal mushroom that has been reported to play a role in scavenging free radicals, protecting the liver, and inhibiting tumor cell activity. In this study, crude extracts were prepared, and 47 triterpenoids were identified by Ultra-high-performance liquid chromatography coupled with triple quadrupole time-of flight mass spectrometry (UHPLC-Triple TOF-MS/MS). Then, the crude extracts were subjected to column chromatography for the first time to obtain six fractions (Fr. (a), (b), (c), (d), (e) and (f)). Antioxidant and anti-inflammatory active tracking assays of all fractions found that Fr. (c) exhibited the strongest bioactivity. Subsequently, the chemical composition of Fr. (c) was clarified, and eight triterpenoids were determined in combination with the standard substances. In addition, this study demonstrated that Fr. (c) reduced the levels of inflammatory cytokines and reactive oxygen species (ROS) in LPS-stimulated RAW264.7 macrophages. Further studies showed that Fr. (c) could down-regulate the expression level of proteins associated of NF-κB signaling pathway, and upregulated Nrf2 and HO-1 protein level. In conclusion, our study showed that Fr. (c) inhibited LPS-mediated inflammatory response and oxidative stress by activating the Nrf2/HO-1 pathway and inactivating the NF-κB pathway. In the future, with the clearing of its composition and activity mechanism, Fr. (c) of G. neo-japonicum are expected to become a functional food for health and longevity.

4.
Phytomedicine ; 112: 154702, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36764096

RESUMO

BACKGROUND: Nervonic acid (C24:1∆15, 24:1 ω-9, cis-tetracos-15-enoic acid; NA), a long-chain monounsaturated fatty acid, plays an essential role in prevention of metabolic diseases, and immune regulation, and has anti-inflammatory properties. As a chronic, immune-mediated inflammatory disease, ulcerative colitis (UC) can affect the large intestine. The influences of NA on UC are largely unknown. PURPOSE: The present study aimed to decipher the anti-UC effect of NA in the mouse colitis model. Specifically, we wanted to explore whether NA can regulate the levels of inflammatory factors in RAW264.7 cells and mouse colitis model. METHODS: To address the above issues, the RAW264.7 cell inflammation model was established by lipopolysaccharide (LPS), then the inflammatory factors tumor necrosis factor-α (TNF-α), Interleukin-6 (IL-6), Interleukin-1ß (IL-1ß), and Interleukin-10 (IL-10) were detected by Enzyme-linked immunosorbent assay (ELISA). The therapeutic effects of NA for UC were evaluated using C57BL/6 mice gavaged dextran sodium sulfate (DSS). Hematoxylin and eosin (H&E) staining, Myeloperoxidase (MPO) kit assay, ELISA, immunofluorescence assay, and LC-MS/MS were used to assess histological changes, MPO levels, inflammatory factors release, expression and distribution of intestinal tight junction (TJ) protein ZO-1, and metabolic pathways, respectively. The levels of proteins involved in the nuclear factor kappa-B (NF-κB) pathway in the UC were investigated by western blotting and RT-qPCR. RESULTS: In vitro experiments verified that NA could reduce inflammatory response and inhibit the activation of key signal pathways associated with inflammation in LPS-induced RAW264.7 cells. Further, results from the mouse colitis model suggested that NA could restore intestinal barrier function and suppress NF-κB signal pathways to ameliorate DSS-induced colitis. In addition, untargeted metabolomics analysis of NA protection against UC found that NA protected mice from colitis by regulating citrate cycle, amino acid metabolism, pyrimidine and purine metabolism. CONCLUSION: These results suggested that NA could ameliorate the secretion of inflammatory factors, suppress the NF-κB signaling pathway, and protect the integrity of colon tissue, thereby having a novel role in prevention or treatment therapy for UC. This work for the first time indicated that NA might be a potential functional food ingredient for preventing and treating inflammatory bowel disease (IBD).


Assuntos
Colite Ulcerativa , Colite , Animais , Camundongos , Cromatografia Líquida , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colo/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Ácidos Graxos Monoinsaturados/farmacologia , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Transdução de Sinais , Espectrometria de Massas em Tandem
5.
J Ethnopharmacol ; 317: 116770, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37308029

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Astragali Radix (AR) is the dry root of the leguminous plants Astragalus membranaceus (Fisch) Beg. var. mongholicus (Beg) Hsiao, and Astragalus membranaceus (Fisch) Bge., being used as a medicinal and edible resource. AR is used in traditional Chinese medicine prescriptions to treat hyperuricemia, but this particular effect is rarely reported, and the associated mechanism of action is still need to be elucidated. AIM OF THE STUDY: To research the uric acid (UA)-lowering activity and mechanism of AR and the representative compounds through the constructed hyperuricemia mouse and cellular models. MATERIALS AND METHODS: In our study, the chemical profile of AR was analysed by UHPLC-QE-MS, as well as the mechanism of action of AR and the representative compounds on hyperuricemia was studied through the constructed hyperuricemia mouse and cellular models. RESULTS: The main compounds in AR were terpenoids, flavonoids and alkaloids. Mice group treated with the highest AR dosage showed significantly lower (p < 0.0001) serum uric acid (208 ± 9 µmol/L) than the control group (317 ± 11 µmol/L). Furthermore, UA increased in a dose-dependence manner in urine and faeces. Serum creatinine and blood urea nitrogen standards, as well as xanthine oxidase in mice liver, decreased (p < 0.05) in all cases, indicating that AR could relieve acute hyperuricemia. UA reabsorption protein (URAT1 and GLUT9) was down-regulated in AR administration groups, while the secretory protein (ABCG2) was up-regulated, indicating that AR could promote the excretion of UA by regulating UA transporters via PI3K/Akt signalling pathway. CONCLUSION: This study validated the activity, and revealed the mechanism of AR in reducing UA, which provided experimental and clinical basis for the treatment of hyperuricemia with it.


Assuntos
Medicamentos de Ervas Chinesas , Hiperuricemia , Camundongos , Animais , Ácido Úrico , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/química , Proteínas de Membrana Transportadoras
6.
Food Chem X ; 15: 100432, 2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36211743

RESUMO

The study aimed to characterize physicochemical, thermal, and rheological properties of cashew nut starch (CNS) and then compare the obtained results with the properties of potato and corn starches. CNS showed higher gelatinization temperatures (112.29 °C) than those noted for potato and maize starches (78.44-94.65 °C). In addition, CNS had higher peak viscosity (19.03 mPa·s) than high amylose corn starch. The static shear rheological test indicated that the CNS followed a pseudoplastic behavior. In addition, CNS sample showed a thixotropic patter, which was less pronounced than that observed for potato starch, but higher than the value reported for high amylose corn starch. These results demonstrated that the shear resistance of CNS was lower than high amylose corn starch, but higher than potato starch. The storage and loss modulus (G' and G", respectively) of the CNS were higher than those reported for the rest of samples. In this line, elastic properties were predominant in CNS sample. In conclusion, results from this study provided insight into physicochemical and structural properties of cashew nut starch, which could represent a preliminary step for its future application in food processing.

7.
Front Oncol ; 11: 806264, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35141153

RESUMO

PURPOSE: The present study aimed to establish a hypoxia related genes model to predict the prognosis of kidney clear cell carcinoma (KIRC) patients using data accessed from The Cancer Genome Atlas (TCGA) database and International Cancer Genome Consortium (ICGC) database. METHODS: Patients' data were downloaded from the TCGA and ICGC databases, and hypoxia related genes were accessed from the Molecular Signatures Database. The differentially expressed genes were evaluated and then the differential expressions hypoxia genes were screened. The TCGA cohort was randomly divided into a discovery TCGA cohort and a validation TCGA cohort. The discovery TCGA cohort was used for constructing the hypoxia genes risk model through Lasso regression, univariate and multivariate Cox regression analysis. Receiver operating characteristic (ROC) curves were used to assess the reliability and sensitivity of our model. Then, we established a nomogram to predict the probable one-, three-, and five-year overall survival rates. Lastly, the Tumor Immune Dysfunction and Exclusion (TIDE) score of patients was calculated. RESULTS: We established a six hypoxia-related gene prognostic model of KIRC patients in the TCGA database and validated in the ICGC database. The patients with high riskscore present poorer prognosis than those with low riskscore in the three TCGA cohorts and ICGC cohort. ROC curves show our six-gene model with a robust predictive capability in these four cohorts. In addition, we constructed a nomogram for KIRC patients in the TCGA database. Finally, the high risk-group had a high TIDE score than the patients with low riskscore. CONCLUSIONS: We established a six hypoxia-related gene risk model for independent prediction of the prognosis of KIRC patients was established and constructed a robust nomogram. The different riskscores might be a biomarker for immunotherapy strategy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA