Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Environ Res ; 241: 117660, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37979928

RESUMO

Cow dung generates globally due to increased beef and milk consumption, but its treatment efficiency remains low. Previous studies have shown that riboflavin-loaded conductive materials can improve anaerobic digestion through enhance direct interspecies electron transfer (DIET). However, its effect on the practical anaerobic digestion of cow dung remained unclear. In this study, carbon cloth loaded with riboflavin (carbon cloth-riboflavin) was added into an anaerobic digester treating cow dung. The carbon cloth-riboflavin reactor showed a better performance than other two reactors. The metagenomic analysis revealed that Methanothrix on the surface of the carbon cloth predominantly utilized the CO2 reduction for methane production, further enhanced after riboflavin addition, while Methanothrix in bulk sludge were using the acetate decarboxylation pathway. Furthermore, the carbon cloth-riboflavin enriched various major methanogenic pathways and activated a large number of enzymes associated with DIET. Riboflavin's presence altered the microbial communities and the abundance of functional genes relate to DIET, ultimately leading to a better performance of anaerobic digestion for cow dung.


Assuntos
Carbono , Elétrons , Bovinos , Animais , Anaerobiose , Metano , Reatores Biológicos , Esgotos
2.
J Am Chem Soc ; 145(42): 23037-23047, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37820314

RESUMO

Rational regulation of the reaction pathway to produce the desired products is one of the most significant challenges in the electrochemical CO2 reduction reaction (CO2RR). Herein, we designed a series of rare-earth Cu catalysts with mixed phases. It was found that the products could be switched from C2+ to CH4 by tuning the composition and structure of the catalysts. Particularly at the Cu/Sm atomic ratio of 9/1 (Cu9Sm1-Ox), the Faradaic efficiency (FE) for C2+ products (FEC2+) could reach 81% at 700 mA cm-2 with negligible CH4. However, the FE of CH4 (FECH4) was 65% at 500 mA cm-2 over Cu1Sm9-Ox (Cu/Sm = 1/9), and the FEC2+ was extremely low. Experiments and theoretical studies indicated that the stable CuSm2O4 phase existed in all the catalysts within the Cu/Sm range of 9/1 to 1/9. At a high Cu content, the catalyst was composed of CuSm2O4 and Cu phases. The small amount of Sm could enhance the binding strength of *CO and facilitate C-C coupling. Conversely, at a high Sm content, the catalyst was composed of CuSm2O4 and Sm2O3 phases. Sm could effectively stabilize bivalent Cu and enrich proton donors, lowering the reaction energy of *CO for deep hydrogenation to generate CH4. In both pathways, the stable CuSm2O4 phase could cooperate with the Cu or Sm2O3 phases, which induced the formation of different microenvironments to generate different products. This strategy also had commonality with other Cu-rare-earth (La, Pr, and Eu) catalysts to boost the CO2RR for C2+ or CH4 production.

3.
J Am Chem Soc ; 145(8): 4675-4682, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36800322

RESUMO

Large-current electrolysis of CO2 to multi-carbon (C2+) products is critical to realize the industrial application of CO2 conversion. However, the poor binding strength of *CO intermediates on the catalyst surface induces multiple competing pathways, which hinder the C2+ production. Herein, we report that p-d orbital hybridization induced by Ga-doped Cu (CuGa) could promote efficient CO2 electrocatalysis to C2+ products at ampere-level current density. It was found that CuGa exhibited the highest C2+ productivity with a remarkable Faradaic efficiency (FE) of 81.5% at a current density of 0.9 A/cm2, and the potential at such a high current density was -1.07 V versus reversible hydrogen electrode. At 1.1 A/cm2, the catalyst still maintained a high C2+ productivity with an FE of 76.9%. Experimental and theoretical studies indicated that the excellent performance of CuGa results from the p-d hybridization of Cu and Ga, which not only enriches reactive sites but also enhances the binding strength of the *CO intermediate and facilitates C-C coupling. The p-d hybridization strategy can be extended to other p-block metal-doped Cu catalysts, such as CuAl and CuGe, to boost CO2 electroreduction for C2+ production. As far as we know, this is the first work to promote electrochemical CO2 reduction reaction to generate the C2+ product by p-d orbital hybridization interaction using a p-block metal-doped Cu catalyst.

4.
Environ Res ; 218: 115063, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36528045

RESUMO

Bacteria have evolved several mechanisms to resist Cd toxicity, which are crucial for Cd detoxication and have the potential to be used for bioremediation of Cd. Geobacter species are widely found in anaerobic environments and play important roles in natural biogeochemical cycles. However, the transcriptomic response of Geobacter sulfurreducens under Cd stress have not been fully elucidated. Through integrated analysis of transcriptomic and protein-protein interaction (PPI) data, we uncovered a global view of mRNA changes in Cd-induced cellular processes in this study. We identified 182 differentially expressed genes (|log2(fold change)| > 1, adjusted P < 0.05) in G. sulfurreducens exposed to 0.1 mM CdCl2 using RNA sequencing (RNA-seq). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that CdCl2 significantly affected sulfur compound metabolic processes. In addition, through PPI network analysis, hub genes related to molecular chaperones were identified to play important role in Cd stress response. We also identified a Cd-responsive transcriptional regulator ArsR2 (coded by GSU2149) and verified the function of ArsR2-ParsR2 regulatory circuit in Escherichia coli. This study provides new insight into Cd stress response in G. sulfurreducens, and identified a potential sensor element for Cd detection.


Assuntos
Geobacter , Transcriptoma , Cádmio/toxicidade , Geobacter/genética , Perfilação da Expressão Gênica
5.
J Environ Manage ; 344: 118502, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37390578

RESUMO

Bioelectrochemical Systems (BESs) leverage microbial metabolic processes to either produce electricity by degrading organic matter or consume electricity to assist metabolism, and can be used for various applications such as energy production, wastewater treatment, and bioremediation. Given the intricate mechanisms of BESs, the application of artificial intelligence (AI)-based methods have been proposed to enhance the performance of BESs due to their capability to identify patterns and gain insights through data analysis. This review focuses on the analysis and comparison of AI algorithms commonly used in BESs, including artificial neural network (ANN), genetic programming (GP), fuzzy logic (FL), support vector regression (SVR), and adaptive neural fuzzy inference system (ANFIS). These algorithms have different features, such as ANN's simple network structure, GP's use in the training process, FL's human-like thought process, SVR's high prediction accuracy and robustness, and ANFIS's combination of ANN and FL features. The AI-based methods have been applied in BESs to predict microbial communities, products or substrates, and reactor performance, which can provide valuable information and improve system efficiency. Limitations of AI-based methods for predicting and optimizing BESs and recommendations for future development are also discussed. This review demonstrates the potential of AI-based methods in optimizing BESs and provides valuable information for the future development of this field.


Assuntos
Inteligência Artificial , Redes Neurais de Computação , Humanos , Algoritmos , Eletricidade , Lógica Fuzzy
6.
Angew Chem Int Ed Engl ; 62(36): e202307612, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37469100

RESUMO

Realizing industrial-scale production of HCOOH from the CO2 reduction reaction (CO2 RR) is very important, but the current density as well as the electrochemical potential window are still limited to date. Herein, we achieved this by integration of chemical adsorption and electrocatalytic capabilities for the CO2 RR via anchoring In nanoparticles (NPs) on biomass-derived substrates to create In/X-C (X=N, P, B) bifunctional active centers. The In NPs/chitosan-derived N-doped defective graphene (In/N-dG) catalyst had outstanding performance for the CO2 RR with a nearly 100 % Faradaic efficiency (FE) of HCOOH across a wide potential window. Particularly, at 1.2 A ⋅ cm-2 high current density, the FE of HCOOH was as high as 96.0 %, and the reduction potential was as low as -1.17 V vs RHE. When using a membrane electrode assembly (MEA), a pure HCOOH solution could be obtained at the cathode without further separation and purification. The FE of HCOOH was still up to 93.3 % at 0.52 A ⋅ cm-2 , and the HCOOH production rate could reach 9.051 mmol ⋅ h-1 ⋅ cm-2 . Our results suggested that the defects and multilayer structure in In/N-dG could not only enhance CO2 chemical adsorption capability, but also trigger the formation of an electron-rich catalytic environment around In sites to promote the generation of HCOOH.

7.
Chemistry ; 28(31): e202200242, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35324042

RESUMO

With the increasing emission of carbon dioxide (CO2 ), the conversion and utilization of CO2 have become a topic of increasing concern. Electrochemical CO2 reduction reaction (CO2 RR) is an attractive and sustainable approach for solving energy and environmental problems. Design of efficient catalysts is crucial for achieving highly efficient CO2 RR. Different methods to prepare catalysts have been reported and used. Among them, electrodeposition is one of the common approaches, which has some obvious advantages, such as requiring simple equipment, environmentally benign. Especially, it can direct deposit catalysts on different substrates to prepare electrodes for CO2 RR. In this review, we discuss recent advances in design and preparation of the catalysts by electrodeposition and their applications in CO2 RR. Furthermore, the perspective of this promising area is also discussed.

8.
Environ Res ; 212(Pt E): 113640, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35688222

RESUMO

In order to explore the microbial diversity in industrial effluents, and on this basis, to verify the feasibility of tracking industrial effluents in sewer networks based on sequencing data, we collected 28 sewage samples from the industrial effluents relative to four factories in Shenzhen, China, and sequenced the 16S rRNA genes to profile the microbial compositions. We identified 5413 operational taxonomic units (OTUs) in total, and found that microbial compositions were highly diverse among samples from different locations in the sewer system, with only 107 OTUs shared by 90% of the samples. These shared OTUs were enriched in the phylum of Proteobacteria, the families of Comamonadaceae and Pseudomonadaceae, as well as the genus of Pseudomonas, with both degradation related and pathogenic bacteria. More importantly, we found differences in microbial composition among samples relevant to different factories, and identified microbial markers differentiating effluents from these factories, which can be used to track the sources of the effluents. This study improved our understanding of microbial diversity in industrial effluents, proved the feasibility of industrial effluent source tracking based on sequencing data, and provided an alternative technique solution for environmental surveillance and management.


Assuntos
Bactérias , Sequenciamento de Nucleotídeos em Larga Escala , Bactérias/genética , Monitoramento Ambiental , RNA Ribossômico 16S/genética , Esgotos/microbiologia
9.
Proc Natl Acad Sci U S A ; 116(14): 6624-6629, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30886092

RESUMO

Electrolysis of water to generate hydrogen fuel is an attractive renewable energy storage technology. However, grid-scale freshwater electrolysis would put a heavy strain on vital water resources. Developing cheap electrocatalysts and electrodes that can sustain seawater splitting without chloride corrosion could address the water scarcity issue. Here we present a multilayer anode consisting of a nickel-iron hydroxide (NiFe) electrocatalyst layer uniformly coated on a nickel sulfide (NiSx) layer formed on porous Ni foam (NiFe/NiSx-Ni), affording superior catalytic activity and corrosion resistance in solar-driven alkaline seawater electrolysis operating at industrially required current densities (0.4 to 1 A/cm2) over 1,000 h. A continuous, highly oxygen evolution reaction-active NiFe electrocatalyst layer drawing anodic currents toward water oxidation and an in situ-generated polyatomic sulfate and carbonate-rich passivating layers formed in the anode are responsible for chloride repelling and superior corrosion resistance of the salty-water-splitting anode.

10.
Chem Soc Rev ; 50(15): 8790-8817, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34160484

RESUMO

The electrocatalytic oxygen evolution reaction (OER) is a critical half-cell reaction for hydrogen production via water electrolysis. However, the practical OER suffers from sluggish kinetics and thus requires efficient electrocatalysts. Transition metal-based layered double hydroxides (LDHs) represent one of the most active classes of OER catalysts. An in-depth understanding of the activity of LDH based electrocatalysts can promote further rational design and active site regulation of high-performance electrocatalysts. In this review, the fundamental understanding of the structural characteristics of LDHs is demonstrated first, then comparisons and in-depth discussions of recent advances in LDHs as highly active OER catalysts in alkaline media are offered, which include both experimental and computational methods. On top of the active site identification and structural characterization of LDHs on an atomic scale, strategies to promote the OER activity are summarised, including doping, intercalation and defect-making. Furthermore, the concept of superaerophobicity, which has a profound impact on the performance of gas evolution electrodes, is explored to enhance LDHs and their derivatives for a large scale OER. In addition, certain operating standards for OER measurements are proposed to avoid inconsistency in evaluating the OER activity of LDHs. Finally, several key challenges in using LDHs as anode materials for large scale water splitting, such as the issue of stability and the adoption of membrane-electrode-assembly based electrolysers, are emphasized to shed light on future research directions.

11.
Small ; 17(45): e2102078, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34612000

RESUMO

Electrocatalytic water splitting in acidic media is a promising strategy for grid scale production of hydrogen using renewable energy, but challenges still exist in the development of advanced catalysts with both high activity and stability. Herein, it is reported that iridium doped tungsten trioxide (Ir-doped WO3 ) with arrayed structure and confined Ir sites is an efficient and durable bi-functional catalyst for overall acidic water splitting. A low overpotential (258 mV) is required to achieve an oxygen evolution reaction current density of 10 mA cm-2 in 0.5 m H2 SO4 solution. Meanwhile, Ir-doped WO3 processes a similar intrinsic activity to Pt/C toward hydrogen evolution reaction. Overall water splitting using the bi-functional Ir-doped WO3 catalyst shows low cell voltages of 1.56 and 1.68 V to drive the current densities of 10 and 100 mA cm-2 , respectively, with only 16 mV decay observed after 60 h continuous electrolysis under the current density of 100 mA cm-2 . Structural analysis and density functional theory calculation indicate that the adjusted coordination environment of Ir within the crystalline matrix of WO3 contributes to the high activity and durability.

12.
Angew Chem Int Ed Engl ; 60(38): 20803-20810, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34272915

RESUMO

Guided by first-principles calculations, it was found that Cd single-atom catalysts (SACs) have excellent performance in activating CO2 , and the introduction of axial coordination structure to Cd SACs cannot only further decrease the free energy barrier of CO2 reduction, but also suppress the hydrogen evolution reaction (HER). Based on the above discovery, we designed and synthesized a novel Cd SAC that comprises an optimized CdN4 S1 moiety incorporated in a carbon matrix. It was shown that the catalyst exhibited outstanding performance in CO2 electroreduction to CO. The faradaic efficiency (FE) of CO could reach up to 99.7 % with a current density of 182.2 mA cm-2 in a H-type electrolysis cell, and the turnover frequency (TOF) value could achieve 73000 h-1 , which was much higher than that reported to date. This work shows a successful example of how to design highly efficient catalysts guided by theoretical calculations.

13.
Environ Res ; 189: 109884, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32678736

RESUMO

Biological treatment of high salinity organic wastewater is a significant challenge because many microorganisms involved in the anaerobic digestion process cannot survive high osmotic pressures. In order to alleviate some of the stresses associated with the treatment of high salinity wastewater, two lab-scale up-flow anaerobic sludge bed reactors with or without magnetite (100 g/L) were used to treat high salinity organic wastewater. This study showed that the bioreactor amended with magnetite had higher chemical oxygen demand removal efficiencies (90.2% ± 0.54% vs 73.1% ± 1.9%) and methane production rates (4082 ± 334 ml (standard temperature and atmospheric pressure, STP)/d vs 2640 ± 120 ml (STP)/d) than the non-amended control reactor. In addition, the consumption of volatile fatty acids (20.9 ± 3.4 mM vs 61.7 ± 2.0 mM) was accelerated. Microbial community analysis revealed that the addition of magnetite caused the enrichment of many bacterial genera known to form robust biofilms (i.e. Pseudomonas) that are also capable of extracellular electron transfer and methanogens from the genus Methanosarcina which have been shown to participate in direct interspecies electron transfer. These results show that magnetite addition could enhance the performance of anaerobic digesters treating high salinity wastewater.


Assuntos
Óxido Ferroso-Férrico , Águas Residuárias , Anaerobiose , Reatores Biológicos , Metano , Salinidade , Esgotos
14.
Angew Chem Int Ed Engl ; 59(27): 10918-10923, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32212372

RESUMO

Hybrid electrodes with improved O2 tolerance and capability of CO2 conversion into liquid products in the presence of O2 are presented. Aniline molecules are introduced into the pore structure of a polymer of intrinsic microporosity to expand its gas separation functionality beyond pure physical sieving. The chemical interaction between the acidic CO2 molecule and the basic amino group of aniline renders enhanced CO2 separation from O2 . Loaded with a cobalt phthalocyanine-based cathode catalyst, the hybrid electrode achieves a CO Faradaic efficiency of 71 % with 10 % O2 in the CO2 feed gas. The electrode can still produce CO at an O2 /CO2 ratio as high as 9:1. Switching to a Sn-based catalyst, for the first time O2 -tolerant CO2 electroreduction to liquid products is realized, generating formate with nearly 100 % selectivity and a current density of 56.7 mA cm-2 in the presence of 5 % O2 .

15.
Small ; 15(46): e1904043, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31529772

RESUMO

Electrocatalytic hydrogen evolution reaction (HER) is an efficient way to generate hydrogen fuel for the storage of renewable energy. Currently, the widely used Pt-based catalysts suffer from high costs and limited electrochemical stability; therefore, developing an efficient alternative catalyst is very urgent. Herein, one pot hydrothermal synthesis is reported of amorphous ruthenium-sulfide (RuSx ) nanoparticles (NPs) supported on sulfur-doped graphene oxide (GO). The as-obtained composite serves as a Pt-like HER electrocatalyst. Achieving a current density of -10 mA cm-2 only requires a small overpotential (-31, -46, and -58 mV in acidic, neutral, and alkaline electrolyte, respectively) with high durability. The isolated Ru active site inducing Volmer-Heyrovsky mechanism in the RuSx NPs is demonstrated by the Tafel analysis and X-ray absorption spectroscopy characterization. Theoretical simulation indicates the isolated Ru site exhibits Pt-like Gibbs free energy of hydrogen adsorption (-0.21 eV) therefore generating high intrinsic HER activity. Moreover, the strong bonding between the RuSx and S-GO, as well as pH tolerance of RuSx are believed to contribute to the high stability. This work shows a new insight for amorphous materials and provides alternative opportunities in designing advanced electrocatalysts with low-cost for HER in the hydrogen economy.

16.
Appl Microbiol Biotechnol ; 103(6): 2715-2729, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30673809

RESUMO

The thermotolerant Kluyveromyces marxianus is a potential candidate for high-temperature ethanol fermentation. Although K. marxianus exhibited high ethanol productivity at 45 °C during the early fermentation stage, we observed a fermentation arrest due to the accumulated inhibitors. The stress responses of K. marxianus during high-temperature fermentation were revealed based on integration of RNA sequencing (RNA-Seq) and metabolite data. High temperature stimulated mitochondrial respiration but repressed the tricarboxylic acid (TCA) cycle, leading to increased generation of reactive oxygen species (ROS) and a lowered ratio of reduced nicotinamide adenine dinucleotide (NADH)/oxidized nicotinamide adenine dinucleotide (NAD+). Glycerol production was enhanced during the early fermentation stage, which might contribute to NADH reoxidation and ROS generation. Excess ROS could be neutralized by reduced nicotinamide adenine dinucleotide phosphate (NADPH) that might be reserved in the following ways: (1) decreased biosynthesis of branched-chain amino acids (BCAAs) reduced NADPH consumption; (2) enhanced acetic acid production increased NADPH regeneration. The degree of fatty acid unsaturation was also reduced to adapt to high temperature. In addition, stress responses were also observed after the fermentation arrest at 45 °C. Genes related to peroxidase activity, iron-sulfur cluster assembly, and flavin mononucleotide (FMN) binding were downregulated, while genes associated with DNA repair and lipid composition of the plasma were upregulated. The yeast also produced more ergosterol to deal with ethanol stress. This study gains comprehensive insights into the K. marxianus transcriptome under various stresses during high-temperature ethanol fermentation, providing rich information for further metabolic engineering towards improved stress tolerance and ethanol production.


Assuntos
Etanol/metabolismo , Fermentação , Temperatura Alta , Kluyveromyces/metabolismo , Estresse Fisiológico , Ácido Acético/metabolismo , Aminoácidos de Cadeia Ramificada/biossíntese , Sequência de Bases , Ciclo do Ácido Cítrico , Glucose/metabolismo , Kluyveromyces/genética , Engenharia Metabólica , Mitocôndrias/metabolismo , NADP/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Análise de Sequência de RNA , Transcriptoma
17.
J Environ Sci (China) ; 85: 156-167, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31471022

RESUMO

This study evaluated uranium sequestration performance in iron-rich (30 g/kg) sediment via bioreduction followed by reoxidation. Field tests (1383 days) at Oak Ridge, Tennessee demonstrated that uranium contents in sediments increased after bioreduced sediments were re-exposed to nitrate and oxygen in contaminated groundwater. Bioreduction of contaminated sediments (1200 mg/kg U) with ethanol in microcosm reduced aqueous U from 0.37 to 0.023 mg/L. Aliquots of the bioreduced sediment were reoxidized with O2, H2O2, and NaNO3, respectively, over 285 days, resulting in aqueous U of 0.024, 1.58 and 14.4 mg/L at pH 6.30, 6.63 and 7.62, respectively. The source- and the three reoxidized sediments showed different desorption and adsorption behaviors of U, but all fit a Freundlich model. The adsorption capacities increased sharply at pH 4.5 to 5.5, plateaued at pH 5.5 to 7.0, then decreased sharply as pH increased from 7.0 to 8.0. The O2-reoxidized sediment retained a lower desorption efficiency at pH over 6.0. The NO3--reoxidized sediment exhibited higher adsorption capacity at pH 5.5 to 6.0. The pH-dependent adsorption onto Fe(III) oxides and formation of U coated particles and precipitates resulted in U sequestration, and bioreduction followed by reoxidation can enhance the U sequestration in sediment.


Assuntos
Biodegradação Ambiental , Poluentes Radioativos do Solo/metabolismo , Urânio/metabolismo , Sedimentos Geológicos/química , Poluentes Radioativos do Solo/química , Tennessee , Urânio/química
18.
Appl Environ Microbiol ; 84(9)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29453264

RESUMO

A site in Oak Ridge, TN, USA, has sediments that contain >3% iron oxides and is contaminated with uranium (U). The U(VI) was bioreduced to U(IV) and immobilized in situ through intermittent injections of ethanol. It then was allowed to reoxidize via the invasion of low-pH (3.6 to 4.0), high-nitrate (up to 200 mM) groundwater back into the reduced zone for 1,383 days. To examine the biogeochemical response, high-throughput sequencing and network analysis were applied to characterize bacterial population shifts, as well as cooccurrence and coexclusion patterns among microbial communities. A paired t test indicated no significant changes of α-diversity for the bioactive wells. However, both nonmetric multidimensional scaling and analysis of similarity confirmed a significant distinction in the overall composition of the bacterial communities between the bioreduced and the reoxidized sediments. The top 20 major genera accounted for >70% of the cumulative contribution to the dissimilarity in the bacterial communities before and after the groundwater invasion. Castellaniella had the largest dissimilarity contribution (17.7%). For the bioactive wells, the abundance of the U(VI)-reducing genera Geothrix, Desulfovibrio, Ferribacterium, and Geobacter decreased significantly, whereas the denitrifying Acidovorax abundance increased significantly after groundwater invasion. Additionally, seven genera, i.e., Castellaniella, Ignavibacterium, Simplicispira, Rhizomicrobium, Acidobacteria Gp1, Acidobacteria Gp14, and Acidobacteria Gp23, were significant indicators of bioactive wells in the reoxidation stage. Canonical correspondence analysis indicated that nitrate, manganese, and pH affected mostly the U(VI)-reducing genera and indicator genera. Cooccurrence patterns among microbial taxa suggested the presence of taxa sharing similar ecological niches or mutualism/commensalism/synergism interactions.IMPORTANCE High-throughput sequencing technology in combination with a network analysis approach were used to investigate the stabilization of uranium and the corresponding dynamics of bacterial communities under field conditions with regard to the heterogeneity and complexity of the subsurface over the long term. The study also examined diversity and microbial community composition shift, the common genera, and indicator genera before and after long-term contaminated-groundwater invasion and the relationship between the target functional community structure and environmental factors. Additionally, deciphering cooccurrence and coexclusion patterns among microbial taxa and environmental parameters could help predict potential biotic interactions (cooperation/competition), shared physiologies, or habitat affinities, thus, improving our understanding of ecological niches occupied by certain specific species. These findings offer new insights into compositions of and associations among bacterial communities and serve as a foundation for future bioreduction implementation and monitoring efforts applied to uranium-contaminated sites.


Assuntos
Fenômenos Fisiológicos Bacterianos , Microbiota , Urânio/efeitos adversos , Biodegradação Ambiental , Água Subterrânea/química , Sequenciamento de Nucleotídeos em Larga Escala , Nitratos/química , Oxirredução , Tennessee
19.
Small ; 13(41)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28891263

RESUMO

Hydrogen evolution reaction (HER) has prospect to becoming clean and renewable technology for hydrogen production and Ni-Mo alloy is among the best HER catalysts in alkaline electrolytes. Here, an in situ topotactic reduction method to synthesize ultrathin 2D Ni-Mo alloy nanosheets for electrocatalytic hydrogen evolution is reported. Due to its ultrathin structure and tailored composition, the as-synthesized Ni-Mo alloy shows an overpotential of 35 mV to reach a current density of 10 mA cm-2 , along with a Tafel slope of 45 mV decade-1 , demonstrating a comparable intrinsic activity to state-of-art commercial Pt/C catalyst. Besides, the vertically aligned assemble structure of the 2D NiMo nanosheets on conductive substrate makes the electrode "superaerophobic," thus leading to much faster bubble releasing during HER process and therefore shows faster mass transfer behavior at high current density as compared with drop drying Pt/C catalyst on the same substrate. Such in situ topotactic conversion finds a way to design and fabricate low-cost, earth-abundant non-noble metal based ultrathin 2D nanostructures for electrocatalytic issues.

20.
Anal Chem ; 88(17): 8495-501, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27457445

RESUMO

Density gradient ultracentrifugation (DGUC) has recently emerged as an effective nanoseparation method to sort polydispersed colloidal NPs mainly according to their size differences to reach monodispersed fractions (NPs), but its separation modeling is still lack and the separation parameters' optimization mainly based on experience of operators. In this paper, we gave mathematical descriptions on the DGUC separation, which suggested the best separation parameters for a given system. The separation parameters, including media density, centrifuge speed and time, which affected the separation efficiency, were discussed in details. Further mathematical optimization model was established to calculate and yield the "best" (optimized) linear gradient for a colloidal system with given size and density. The practical experiment results matched well with theoretical prediction, demonstrating the DGUC method, an efficient, practical, and predictable separation technique with universal utilization for colloid sorting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA