Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 961
Filtrar
1.
Cell ; 184(9): 2362-2371.e9, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33735608

RESUMO

The 501Y.V2 variants of SARS-CoV-2 containing multiple mutations in spike are now dominant in South Africa and are rapidly spreading to other countries. Here, experiments with 18 pseudotyped viruses showed that the 501Y.V2 variants do not confer increased infectivity in multiple cell types except for murine ACE2-overexpressing cells, where a substantial increase in infectivity was observed. Notably, the susceptibility of the 501Y.V2 variants to 12 of 17 neutralizing monoclonal antibodies was substantially diminished, and the neutralization ability of the sera from convalescent patients and immunized mice was also reduced for these variants. The neutralization resistance was mainly caused by E484K and N501Y mutations in the receptor-binding domain of spike. The enhanced infectivity in murine ACE2-overexpressing cells suggests the possibility of spillover of the 501Y.V2 variants to mice. Moreover, the neutralization resistance we detected for the 501Y.V2 variants suggests the potential for compromised efficacy of monoclonal antibodies and vaccines.


Assuntos
COVID-19/imunologia , COVID-19/virologia , Evasão da Resposta Imune , SARS-CoV-2/patogenicidade , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Antígenos Virais/imunologia , Linhagem Celular Tumoral , Células HEK293 , Humanos , Mutação/genética , SARS-CoV-2/genética
2.
Cell ; 182(5): 1284-1294.e9, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32730807

RESUMO

The spike protein of SARS-CoV-2 has been undergoing mutations and is highly glycosylated. It is critically important to investigate the biological significance of these mutations. Here, we investigated 80 variants and 26 glycosylation site modifications for the infectivity and reactivity to a panel of neutralizing antibodies and sera from convalescent patients. D614G, along with several variants containing both D614G and another amino acid change, were significantly more infectious. Most variants with amino acid change at receptor binding domain were less infectious, but variants including A475V, L452R, V483A, and F490L became resistant to some neutralizing antibodies. Moreover, the majority of glycosylation deletions were less infectious, whereas deletion of both N331 and N343 glycosylation drastically reduced infectivity, revealing the importance of glycosylation for viral infectivity. Interestingly, N234Q was markedly resistant to neutralizing antibodies, whereas N165Q became more sensitive. These findings could be of value in the development of vaccine and therapeutic antibodies.


Assuntos
Antígenos Virais/genética , Betacoronavirus/patogenicidade , Mutação , Glicoproteína da Espícula de Coronavírus/genética , Células A549 , Animais , Antígenos Virais/imunologia , Betacoronavirus/genética , Betacoronavirus/imunologia , Sítios de Ligação , Bovinos , Chlorocebus aethiops , Cricetinae , Cães , Glicosilação , Células HEK293 , Células HeLa , Humanos , Macaca mulatta , Células Madin Darby de Rim Canino , Camundongos , Células RAW 264.7 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Suínos , Células Vero , Virulência/genética
3.
Nature ; 602(7898): 657-663, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35016194

RESUMO

The SARS-CoV-2 B.1.1.529 (Omicron) variant contains 15 mutations of the receptor-binding domain (RBD). How Omicron evades RBD-targeted neutralizing antibodies requires immediate investigation. Here we use high-throughput yeast display screening1,2 to determine the profiles of RBD escaping mutations for 247 human anti-RBD neutralizing antibodies and show that the neutralizing antibodies can be classified by unsupervised clustering into six epitope groups (A-F)-a grouping that is highly concordant with knowledge-based structural classifications3-5. Various single mutations of Omicron can impair neutralizing antibodies of different epitope groups. Specifically, neutralizing antibodies in groups A-D, the epitopes of which overlap with the ACE2-binding motif, are largely escaped by K417N, G446S, E484A and Q493R. Antibodies in group E (for example, S309)6 and group F (for example, CR3022)7, which often exhibit broad sarbecovirus neutralizing activity, are less affected by Omicron, but a subset of neutralizing antibodies are still escaped by G339D, N440K and S371L. Furthermore, Omicron pseudovirus neutralization showed that neutralizing antibodies that sustained single mutations could also be escaped, owing to multiple synergetic mutations on their epitopes. In total, over 85% of the tested neutralizing antibodies were escaped by Omicron. With regard to neutralizing-antibody-based drugs, the neutralization potency of LY-CoV016, LY-CoV555, REGN10933, REGN10987, AZD1061, AZD8895 and BRII-196 was greatly undermined by Omicron, whereas VIR-7831 and DXP-604 still functioned at a reduced efficacy. Together, our data suggest that infection with Omicron would result in considerable humoral immune evasion, and that neutralizing antibodies targeting the sarbecovirus conserved region will remain most effective. Our results inform the development of antibody-based drugs and vaccines against Omicron and future variants.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Evasão da Resposta Imune/imunologia , Testes de Neutralização , SARS-CoV-2/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/classificação , Anticorpos Antivirais/classificação , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Células Cultivadas , Convalescença , Epitopos de Linfócito B/química , Epitopos de Linfócito B/imunologia , Humanos , Soros Imunes/imunologia , Modelos Moleculares , Mutação , SARS-CoV-2/química , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo
4.
Nature ; 603(7903): 919-925, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35090164

RESUMO

Omicron (B.1.1.529), the most heavily mutated SARS-CoV-2 variant so far, is highly resistant to neutralizing antibodies, raising concerns about the effectiveness of antibody therapies and vaccines1,2. Here we examined whether sera from individuals who received two or three doses of inactivated SARS-CoV-2 vaccine could neutralize authentic Omicron. The seroconversion rates of neutralizing antibodies were 3.3% (2 out of 60) and 95% (57 out of 60) for individuals who had received 2 and 3 doses of vaccine, respectively. For recipients of three vaccine doses, the geometric mean neutralization antibody titre for Omicron was 16.5-fold lower than for the ancestral virus (254). We isolated 323 human monoclonal antibodies derived from memory B cells in triple vaccinees, half of which recognized the receptor-binding domain, and showed that a subset (24 out of 163) potently neutralized all SARS-CoV-2 variants of concern, including Omicron. Therapeutic treatments with representative broadly neutralizing monoclonal antibodies were highly protective against infection of mice with SARS-CoV-2 Beta (B.1.351) and Omicron. Atomic structures of the Omicron spike protein in complex with three classes of antibodies that were active against all five variants of concern defined the binding and neutralizing determinants and revealed a key antibody escape site, G446S, that confers greater resistance to a class of antibodies that bind on the right shoulder of the receptor-binding domain by altering local conformation at the binding interface. Our results rationalize the use of three-dose immunization regimens and suggest that the fundamental epitopes revealed by these broadly ultrapotent antibodies are rational targets for a universal sarbecovirus vaccine.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Células B de Memória , SARS-CoV-2 , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/isolamento & purificação , Anticorpos Antivirais/uso terapêutico , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , Modelos Animais de Doenças , Humanos , Células B de Memória/imunologia , Camundongos , Testes de Neutralização , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia
5.
Nature ; 608(7923): 593-602, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35714668

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron sublineages BA.2.12.1, BA.4 and BA.5 exhibit higher transmissibility than the BA.2 lineage1. The receptor binding and immune-evasion capability of these recently emerged variants require immediate investigation. Here, coupled with structural comparisons of the spike proteins, we show that BA.2.12.1, BA.4 and BA.5 (BA.4 and BA.5 are hereafter referred collectively to as BA.4/BA.5) exhibit similar binding affinities to BA.2 for the angiotensin-converting enzyme 2 (ACE2) receptor. Of note, BA.2.12.1 and BA.4/BA.5 display increased evasion of neutralizing antibodies compared with BA.2 against plasma from triple-vaccinated individuals or from individuals who developed a BA.1 infection after vaccination. To delineate the underlying antibody-evasion mechanism, we determined the escape mutation profiles2, epitope distribution3 and Omicron-neutralization efficiency of 1,640 neutralizing antibodies directed against the receptor-binding domain of the viral spike protein, including 614 antibodies isolated from people who had recovered from BA.1 infection. BA.1 infection after vaccination predominantly recalls humoral immune memory directed against ancestral (hereafter referred to as wild-type (WT)) SARS-CoV-2 spike protein. The resulting elicited antibodies could neutralize both WT SARS-CoV-2 and BA.1 and are enriched on epitopes on spike that do not bind ACE2. However, most of these cross-reactive neutralizing antibodies are evaded by spike mutants L452Q, L452R and F486V. BA.1 infection can also induce new clones of BA.1-specific antibodies that potently neutralize BA.1. Nevertheless, these neutralizing antibodies are largely evaded by BA.2 and BA.4/BA.5 owing to D405N and F486V mutations, and react weakly to pre-Omicron variants, exhibiting narrow neutralization breadths. The therapeutic neutralizing antibodies bebtelovimab4 and cilgavimab5 can effectively neutralize BA.2.12.1 and BA.4/BA.5, whereas the S371F, D405N and R408S mutations undermine most broadly sarbecovirus-neutralizing antibodies. Together, our results indicate that Omicron may evolve mutations to evade the humoral immunity elicited by BA.1 infection, suggesting that BA.1-derived vaccine boosters may not achieve broad-spectrum protection against new Omicron variants.


Assuntos
Anticorpos Antivirais , Deriva e Deslocamento Antigênicos , COVID-19 , Epitopos de Linfócito B , Tolerância Imunológica , Mutação , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Deriva e Deslocamento Antigênicos/genética , Deriva e Deslocamento Antigênicos/imunologia , COVID-19/imunologia , COVID-19/transmissão , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Epitopos de Linfócito B/química , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/imunologia , Humanos , Imunidade Humoral , Imunização Secundária , Testes de Neutralização , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(45): e2309032120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37903267

RESUMO

Tryptophan and its derivatives perform a variety of biological functions; however, the role and specific mechanism of many tryptophan derivatives in intestinal inflammation remain largely unclear. Here, we identified that an Escherichia coli strain (Ec-TMU) isolated from the feces of tinidazole-treated individuals, and indole-3-lactic acid (ILA) in its supernatant, decreased the susceptibility of mice to dextran sulfate sodium-induced colitis. Ec-TMU and ILA contribute to the relief of colitis by inhibiting the production of epithelial CCL2/7, thereby reducing the accumulation of inflammatory macrophages in vitro and in vivo. Mechanistically, ILA downregulates glycolysis, NF-κB, and HIF signaling pathways via the aryl hydrocarbon receptor, resulting in decreased CCL2/7 production in epithelial cells. Clinical evidence suggests that the fecal ILA level is negatively correlated with the progression indicator of inflammatory bowel diseases. These results demonstrate that ILA has the potential to regulate intestinal homeostasis by modulating epithelium-macrophage interactions.


Assuntos
Colite , Triptofano , Animais , Camundongos , Triptofano/metabolismo , Colite/metabolismo , Macrófagos/metabolismo , Epitélio/metabolismo , Sulfato de Dextrana/toxicidade , Camundongos Endogâmicos C57BL , Mucosa Intestinal/metabolismo
7.
Development ; 149(10)2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35502748

RESUMO

Adventitious roots (ARs) are an important type of plant root and display high phenotypic plasticity in response to different environmental stimuli. It is known that photoreceptors inhibit darkness-induced hypocotyl adventitious root (HAR) formation by directly stabilizing Aux/IAA proteins. In this study, we further report that phytochrome-interacting factors (PIFs) plays a central role in HAR initiation by simultaneously inducing the expression of genes involved in auxin biosynthesis, auxin transport and the transcriptional control of root primordium initiation. We found that, on the basis of their activity downstream of phytochrome, PIFs are required for darkness-induced HAR formation. Specifically, PIFs directly bind to the promoters of some genes involved in root formation, including auxin biosynthesis genes YUCCA2 (YUC2) and YUC6, the auxin influx carrier genes AUX1 and LAX3, and the transcription factors WOX5/7 and LBD16/29, to activate their expression. These findings reveal a previously uncharacterized transcriptional regulatory network underlying HAR formation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Hipocótilo/genética , Hipocótilo/metabolismo , Ácidos Indolacéticos/metabolismo , Fitocromo/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
8.
Proc Natl Acad Sci U S A ; 119(30): e2203218119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35867826

RESUMO

The exposed N-terminal or C-terminal residues of proteins can act, in cognate sequence contexts, as degradation signals (degrons) that are targeted by specific E3 ubiquitin ligases for proteasome-dependent degradation by N-degron or C-degron pathways. Here, we discovered a distinct C-degron pathway, termed the Gln/C-degron pathway, in which the B30.2 domain of E3 ubiquitin ligase TRIM7 (TRIM7B30.2) mediates the recognition of proteins bearing a C-terminal glutamine. By determining crystal structures of TRIM7B30.2 in complexes with various peptides, we show that TRIM7B30.2 forms a positively charged binding pocket to engage the "U"-shaped Gln/C-degron. The four C-terminal residues of a substrate play an important role in C-degron recognition, with C-terminal glutamine as the principal determinant. In vitro biochemical and cellular experiments were used to further analyze the substrate specificity and selective degradation of the Gln/C-degron by TRIM7.


Assuntos
Glutamina , Proteólise , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Glutamina/metabolismo , Humanos , Domínios Proteicos , Especificidade por Substrato , Proteínas com Motivo Tripartido/química , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo
9.
Mol Cancer ; 23(1): 145, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014366

RESUMO

Colorectal cancer (CRC) is one of the most prevalent malignancies affecting the gastrointestinal tract and is ranked third among cancers with the highest incidence and second-highest mortality rate worldwide. CRC exhibits a slow progression providing a wide treatment window. The currently employed CRC screening methods have shown great potential to prevent CRC and reduce CRC-related morbidity and mortality. The diagnosis of CRC is achieved by colonoscopy and tissue biopsy, with studies showing that liquid biopsy is more effective in detecting and diagnosing early CRC patients. Increasing number of studies have shown that the tumor components shed into circulating blood can be detected in liquid form, and can be applied in the clinical management of CRC. Analysis of circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), or tumor-associated platelets (TEPs) in the blood can be used for early screening and diagnosis of CRC, aid tumor staging, treatment response monitoring, and prediction of CRC recurrence and metastasis in a minimally invasive manner. This chapter provides an updated review of CTCs, ctDNA, and TEPs as novel biomarkers for CRC, highlighting their strengths and limitations.


Assuntos
Biomarcadores Tumorais , DNA Tumoral Circulante , Neoplasias Colorretais , Células Neoplásicas Circulantes , Humanos , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Biópsia Líquida/métodos , Células Neoplásicas Circulantes/patologia , Células Neoplásicas Circulantes/metabolismo , DNA Tumoral Circulante/sangue , Prognóstico , Detecção Precoce de Câncer/métodos , Gerenciamento Clínico , Animais
10.
Nat Methods ; 18(7): 788-798, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34127857

RESUMO

Lysosomes are critical for cellular metabolism and are heterogeneously involved in various cellular processes. The ability to measure lysosomal metabolic heterogeneity is essential for understanding their physiological roles. We therefore built a single-lysosome mass spectrometry (SLMS) platform integrating lysosomal patch-clamp recording and induced nano-electrospray ionization (nanoESI)/mass spectrometry (MS) that enables concurrent metabolic and electrophysiological profiling of individual enlarged lysosomes. The accuracy and reliability of this technique were validated by supporting previous findings, such as the transportability of lysosomal cationic amino acids transporters such as PQLC2 and the lysosomal trapping of lysosomotropic, hydrophobic weak base drugs such as lidocaine. We derived metabolites from single lysosomes in various cell types and classified lysosomes into five major subpopulations based on their chemical and biological divergence. Senescence and carcinoma altered metabolic profiles of lysosomes in a type-specific manner. Thus, SLMS can open more avenues for investigating heterogeneous lysosomal metabolic changes during physiological and pathological processes.


Assuntos
Lisossomos/metabolismo , Metabolômica/métodos , Técnicas de Patch-Clamp , Espectrometria de Massas por Ionização por Electrospray/métodos , Sistemas de Transporte de Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Senescência Celular , Fibroblastos/citologia , Fibroblastos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lidocaína/química , Lidocaína/metabolismo , Reprodutibilidade dos Testes , Razão Sinal-Ruído , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia
11.
Chemistry ; 30(29): e202304111, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38486422

RESUMO

Extracellular vesicles (EVs) carry diverse biomolecules (e. g., nucleic acids, proteins) for intercellular communication, serving as important markers for diseases. Analyzing nucleic acids derived from EVs enables non-invasive disease diagnosis and prognosis evaluation. Membrane fusion, a fundamental cellular process wherein two lipid membranes merge, facilitates cell communication and cargo transport. Building on this natural phenomenon, recent years have witnessed the emergence of membrane fusion-based strategies for the detection of nucleic acids within EVs. These strategies entail the encapsulation of detection probes within either artificial or natural vesicles, followed by the induction of membrane fusion with EVs to deliver probes. This innovative approach not only enables in situ detection of nucleic acids within EVs but also ensures the maintenance of structural integrity of EVs, thus preventing nucleic acid degradation and minimizing the interference from free nucleic acids. This concept categorizes approaches into universal and targeted membrane fusion strategies, and discusses their application potential, and challenges and future prospects.


Assuntos
Vesículas Extracelulares , Fusão de Membrana , Ácidos Nucleicos , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Ácidos Nucleicos/análise , Ácidos Nucleicos/química , Humanos
12.
Langmuir ; 40(28): 14717-14723, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38959333

RESUMO

Surface enhanced Raman spectroscopy (SERS) is a highly sensitive analytical detection method commonly employed in biochemical and environmental analysis. Nevertheless, the rapid movement of analytes and interfering components in flow systems can impact the real-time, online detection capability of Raman spectroscopy. To address this issue, we developed an innovative approach utilizing covalent organic framework (COF), a robust porous material with excellent water stability, to coat the surface of Ag nanowire (AgNW) for synthesizing AgNW@COF hybrid. The regular pores of the COF serve to effectively eliminate large interfering molecules while facilitating the efficient transport of specific analytes to SERS hot spots. Additionally, the fluid flow-induced scouring effect aids in excluding interfering molecules from the surface of AgNW. By incorporating AgNW@COF into a bifunctional filter membrane with simultaneous filtration and sensing capabilities, we had achieved efficient purification of organic pollutants as well as real-time identification of pollutant species and concentration.

13.
EMBO Rep ; 23(9): e53234, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35913019

RESUMO

Lysosomes are degradative organelles and play vital roles in a variety of cellular processes. Ion channels on the lysosomal membrane are key regulators of lysosomal function. TMEM175 has been identified as a lysosomal potassium channel, but its modulation and physiological functions remain unclear. Here, we show that the apoptotic regulator Bcl-2 binds to and inhibits TMEM175 activity. Accordingly, Bcl-2 inhibitors activate the channel in a caspase-independent way. Increased TMEM175 function inhibits mitophagy, disrupts mitochondrial homeostasis, and increases production of reactive oxygen species (ROS). ROS further activates TMEM175 and thus forms a positive feedback loop to augment apoptosis. In a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease (PD), knockout (KO) of TMEM175 mitigated motor impairment and dopaminergic (DA) neuron loss, suggesting that TMEM175-mediated apoptosis plays an important role in Parkinson's disease (PD). Overall, our study reveals that TMEM175 is an important regulatory site in the apoptotic signaling pathway and a potential therapeutic target for Parkinson's disease (PD).


Assuntos
Doença de Parkinson , Animais , Apoptose , Modelos Animais de Doenças , Lisossomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Canais de Potássio/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo
14.
Fish Shellfish Immunol ; 148: 109476, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447780

RESUMO

Trachinotus ovatus is an economically important fish and has been recommended as a high-quality aquaculture fish breed for the high-quality development of sea ranches in the South China Sea. However, T. ovatus shows intolerance to low temperature, greatly limiting the extension of farming scale, reducing production efficiency in winter, and increasing farming risks. In this study, liver transcriptome analysis was investigated in T. ovatus under acute low temperature conditions (20 and 15 °C) using RNA sequencing (RNA-Seq) technology. Inter-groups differential expression analysis and trend analysis screened 1219 DEGs and four significant profiles (profiles 0, 3, 4, and 7), respectively. GO enrichment analysis showed that these DEGs were mainly related to metabolic process and cell growth and death process. KEGG enrichment analysis found that DEGs were mainly associated with lipid metabolism, carbohydrate metabolism, and cell growth and death, such as gluconeogenesis, glycolysis, fatty acid oxidation, cholesterol biosynthesis, p53 signaling pathway, cell cycle arrest, and apoptotic cell death. Moreover, protein-protein interaction networks identified two hub genes (FOS and JUNB) and some important genes related to metabolic process and cell growth and death process, that corresponding to enrichment analysis. Overall, gluconeogenesis, lipid mobilization, and fatty acid oxidation in metabolic process and cell cycle arrest and apoptotic cell death in cell growth and death process were enhanced, while glycolysis, liver glycogen synthesis and cholesterol biosynthesis in metabolic process were inhibited. The enhancement or attenuatment of metabolic process and cell growth and death process is conducive to maintain energy balance, normal fluidity of cell membrane, normal physiological functions of liver cell, enhancing the tolerance of T. ovatus to cold stress. These results suggested that metabolic process and cell growth and death process play important roles in response to acute cold stress in the liver of T. ovatus. Gene expreesion level analysis showed that acute cold stress at 15 °C was identified as a critical temperature point for T. ovatus in term of cellular metabolism alteration and apoptosis inducement, and rewarming intervention should be timely implemented above 15 °C. Our study can provide theoretical support for breeding cold-tolerant cultivars of T. ovatus, which is contributed to high-quality productions fish production.


Assuntos
Resposta ao Choque Frio , Perfilação da Expressão Gênica , Animais , Resposta ao Choque Frio/genética , Perfilação da Expressão Gênica/veterinária , Peixes/genética , Fígado/metabolismo , Temperatura Baixa , Colesterol/metabolismo , Ácidos Graxos/metabolismo , Transcriptoma
15.
Acta Pharmacol Sin ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942954

RESUMO

C/EBP homologous protein (CHOP) triggers the death of multiple cancers via endoplasmic reticulum (ER) stress. However, the function and regulatory mechanism of CHOP in liver cancer remain elusive. We have reported that late endosomal/lysosomal adapter, mitogen-activated protein kinase and mTOR activator 5 (LAMTOR5) suppresses apoptosis in various cancers. Here, we show that the transcriptional and posttranscriptional inactivation of CHOP mediated by LAMTOR5 accelerates liver cancer growth. Clinical bioinformatic analysis revealed that the expression of CHOP was low in liver cancer tissues and that its increased expression predicted a good prognosis. Elevated CHOP contributed to destruction of LAMTOR5-induced apoptotic suppression and proliferation. Mechanistically, LAMTOR5-recruited DNA methyltransferase 1 (DNMT1) to the CpG3 region (-559/-429) of the CHOP promoter and potentiated its hypermethylation to block its interaction with general transcription factor IIi (TFII-I), resulting in its inactivation. Moreover, LAMTOR5-enhanced miR-182/miR-769 reduced CHOP expression by targeting its 3'UTR. Notably, lenvatinib, a first-line targeted therapy for liver cancer, could target the LAMTOR5/CHOP axis to prevent liver cancer progression. Accordingly, LAMTOR5-mediated silencing of CHOP via the regulation of ER stress-related apoptosis promotes liver cancer growth, providing a theoretical basis for the use of lenvatinib for the treatment of liver cancer.

16.
Int Urogynecol J ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900163

RESUMO

INTRODUCTION AND HYPOTHESIS: Identifying the factors influencing the development of female urinary incontinence (UI) may facilitate early intervention, potentially delaying its progression. This study was aimed at investigating the impact of lifestyle habits on the severity of UI among women in East China. METHODS: This study included 414 women from six communities in East China who reported symptoms of UI and was conducted between September and December 2020. Data were collected using a general information questionnaire, the Toileting Behaviours: Women's Elimination Behaviours scale, and the International Consultation on Incontinence Questionnaire Urinary Incontinence Short Form Chinese Version. Participants were categorised into two groups: those with mild UI and those with moderate-to-severe UI. Propensity-score matching was performed to balance confounding factors, and logistic regression was used to explore the relationship between lifestyle behaviours and UI severity. RESULTS: A total of 117 pairs were successfully matched. Logistic regression analysis revealed that daily perineal cleaning significantly protected against moderate-to-severe UI (p < 0.05). Conversely, living alone, poor sleep quality and hovering over the toilet while voiding were identified as independent risk factors for moderate-to-severe UI (p < 0.05). CONCLUSION: Several lifestyle habits significantly impact the severity of UI among adult women. Screening for mild urinary leakage symptoms and implementing timely interventions are crucial for preventing the aggravation of UI and improving ability to work and quality of life.

17.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34099560

RESUMO

Allergic asthma, driven by T helper 2 cell-mediated immune responses to common environmental antigens, remains the most common respiratory disease in children. Perfluorinated chemicals (PFCs) are environmental contaminants of great concern, because of their wide application, persistence in the environment, and bioaccumulation. PFCs associate with immunological disorders including asthma and attenuate immune responses to vaccines. The influence of PFCs on the immunological response to allergens during childhood is unknown. We report here that a major PFC, perfluorooctane sulfonate (PFOS), inactivates house dust mite (HDM) to dampen 5-wk-old, early weaned mice from developing HDM-induced allergic asthma. PFOS further attenuates the asthma protective effect of the microbial product lipopolysaccharide (LPS). We demonstrate that PFOS prevents desensitization of lung epithelia by LPS, thus abolishing the latter's protective effect. A close mechanistic study reveals that PFOS specifically binds the major HDM allergen Der p1 with high affinity as well as the lipid A moiety of LPS, leading to the inactivation of both antigens. Moreover, PFOS at physiological human (nanomolar) concentrations inactivates Der p1 from HDM and LPS in vitro, although higher doses did not cause further inactivation because of possible formation of PFOS aggregates. This PFOS-induced neutralization of LPS has been further validated in primary human cell models and extended to an in vivo bacterial infection mouse model. This study demonstrates that early life exposure of mice to a PFC blunts airway antigen bioactivity to modulate pulmonary inflammatory responses, which may adversely affect early pulmonary health.


Assuntos
Ácidos Alcanossulfônicos/farmacologia , Antígenos de Dermatophagoides/imunologia , Asma/imunologia , Asma/parasitologia , Fluorocarbonos/farmacologia , Hipersensibilidade/imunologia , Hipersensibilidade/parasitologia , Ácidos Alcanossulfônicos/química , Animais , Antígenos de Dermatophagoides/química , Asma/complicações , Asma/genética , Células Dendríticas/imunologia , Escherichia coli , Feminino , Fluorocarbonos/química , Perfilação da Expressão Gênica , Hipersensibilidade/complicações , Hipersensibilidade/genética , Imunomodulação/efeitos dos fármacos , Imunomodulação/genética , Lipopolissacarídeos , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/parasitologia , Pulmão/patologia , Camundongos Endogâmicos BALB C , Modelos Moleculares , Pseudomonas aeruginosa/fisiologia , Pyroglyphidae/fisiologia
18.
J Perinat Med ; 52(1): 41-49, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-37694534

RESUMO

OBJECTIVES: Preeclampsia (PE) is a disease specific to pregnancy that causes 9-10 % of maternal deaths. Early-onset PE (<34 weeks' gestation) is the most dangerous category of PE. Wnt7a and GPR124 (G protein-coupled receptor 124) are widely expressed in the human reproductive process. Especially during embryogenesis and tumorigenesis, Wnt7a plays a crucial role. However, few studies have examined the association between Wnt7a-GPR124 and early-onset PE. The aim of this study was to examine the significance of Wnt7a and GPR124 in early-onset PE as well as Wnt7a's role in trophoblast cells. METHODS: Immunohistochemistry (IHC), real-time PCR, and western blotting (WB) were used to investigate Wnt7a and GPR124 expression in normal and early-onset PE placentas. Additionally, FACS, Transwell, and CCK-8 assays were used to diagnose Wnt7a involvement in migration, invasion, and proliferation. RESULTS: In the early-onset PE group, Wnt7a and GPR124 expression was significantly lower than in the normal group, especially in the area of syncytiotrophoblasts (STBs) and extravillous trophoblasts (EVTs). A negative correlation was found between Wnt7a RNA and GPR124 expression (r=-0.42, p<0.01). However, the Wnt7a RNA expression level was positive correlated with PE severity. In further cellular functional experiments, knockdown of Wnt7a inhibits HTR8/SVeno cells invasion and migration but has little effect on proliferation and apoptosis. CONCLUSIONS: Through the Wnt pathway, Wnt7a regulates trophoblast cell invasion and migration, and may contribute to early-onset preeclampsia pathogenesis. A molecular level study of Wnt7a will be needed to find downstream proteins and mechanisms of interaction.


Assuntos
Pré-Eclâmpsia , Gravidez , Feminino , Humanos , Pré-Eclâmpsia/genética , Linhagem Celular , Placenta/metabolismo , Trofoblastos/fisiologia , RNA/metabolismo , Proliferação de Células
19.
Ecotoxicol Environ Saf ; 281: 116615, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38905933

RESUMO

BACKGROUND: Paraquat (PQ) is a widely used herbicide that poisons human by accident or intentional ingestion. PQ poisoning causes systemic inflammatory response syndrome (SIRS) resulting in acute lung injury (ALI) with an extremely high mortality rate. Blood trematode Schistosoma japonicum-produced cystatin (Sj-Cys) is a strong immunomodulatory protein that has been experimentally used to treat inflammation related diseases. In this study, Sj-Cys recombinant protein (rSj-Cys) was used to treat PQ-induced lung injury and the immunological mechanism underlying the therapeutic effect was investigated. METHODS: PQ-induced acute lung injury mouse model was established by intraperitoneally injection of 20 mg/kg of paraquat. The poisoned mice were treated with rSj-Cys and the survival rate was observed up to 7 days compared with the group without treatment. The pathological changes of PQ-induced lung injury were observed by examining the histochemical sections of affected lung tissue and the wet to dry ratio of lung as a parameter for inflammation and edema. The levels of the inflammation related cytokines IL-6 and TNF-α and regulatory cytokines IL-10 and TGF-ß were measured in sera and in affected lung tissue using ELISA and their mRNA levels in lung tissue using RT-PCR. The macrophages expressing iNOS were determined as M1 and those expressing Arg-1 as M2 macrophages. The effect of rSj-Cys on the transformation of inflammatory M1 to regulatory M2 macrophages was measured in affected lung tissue in vivo (EKISA and RT-PCR) and in MH-S cell line in vitro (flow cytometry). The expression levels of TLR2 and MyD88 in affected lung tissue were also measured to determine their role in the therapy of rSj-Cys on PQ-induced lung injury. RESULT: We identified that treatment with rSj-Cys significantly improved the survival rate of mice with PQ-induced lung injury from 30 % (untreated) to 80 %, reduced the pathological damage of poisoning lung tissue, associated with significantly reduced levels of proinflammatory cytokines (IL-6 from 1490 to 590 pg/ml, TNF-α from 260 to 150 pg/ml) and increased regulatory cytokines (IL-10 from360 to 550 pg/ml, and TGF-ß from 220 to 410 pg/ml) in both sera (proteins) and affected lung tissue (proteins and mRNAs). The polarization of macrophages from M1to M2 type was found to be involved in the therapeutic effect of rSj-Cys on the PQ-induced acute lung injury, possibly through inhibiting TLR2/MyD88 signaling pathway. CONCLUSIONS: Our study demonstrated the therapeutic effect of rSj-Cys on PQ poisoning caused acute lung injury by inducing M2 macrophage polarization through inhibiting TLR2/MyD88 signaling pathway. The finding in this study provides an alternative approach for the treatment of PQ poisoning and other inflammatory diseases.


Assuntos
Lesão Pulmonar Aguda , Cistatinas , Paraquat , Schistosoma japonicum , Animais , Paraquat/toxicidade , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/tratamento farmacológico , Camundongos , Herbicidas/toxicidade , Macrófagos/efeitos dos fármacos , Pulmão/patologia , Pulmão/efeitos dos fármacos , Masculino , Citocinas/metabolismo , Modelos Animais de Doenças
20.
Ann Hum Biol ; 51(1): 1-6, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38251837

RESUMO

BACKGROUND: At present, there are no available genetic data on the AGCU EX22 Kit from the Wuhu Han population. AIM: This study investigates the applicability of the AGCU EX22 kit, designed for the Chinese population for forensic analysis and population genetics of the Wuhu Han population. SUBJECTS AND METHODS: Bloodstains from 1565 unrelated healthy individuals in Wuhu city, Anhui Province, were collected for analysis. The AGCU EX22 kit was used for amplification, and capillary electrophoresis was used to separate the amplification products. Allele frequencies and forensic parameters were determined. The Wuhu Han population was compared to 10 reference populations through genetic distance, a phylogenetic neighbor-joining tree and principal component analysis. RESULTS: In total, 281 alleles and 1187 genotypes were observed. No significant deviations from Hardy-Weinberg equilibrium at any locus were found after Bonferroni's correction. The 21 autosomal short tandem repeat (STR) genetic markers exhibited high informativeness and polymorphism. The cumulative power of discrimination and power of exclusion were 0.999999999999999999999999913380 and 0.999999996752339, respectively. Population comparisons revealed a genetic affinity between Wuhu Han and southern Han populations, except for the Guangdong Han population, which aligned with the traditional geographical division in China. CONCLUSION: The AGCU EX22 Kit, containing 21 STR loci, is suitable for forensic application and population genetics studies in the Wuhu Han population.


Assuntos
População do Leste Asiático , Repetições de Microssatélites , Humanos , Alelos , China , População do Leste Asiático/genética , Genética Forense , Frequência do Gene , Genética Populacional , Voluntários Saudáveis , Filogenia , Sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA