Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hepatology ; 77(3): 816-833, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35753047

RESUMO

BACKGROUND AND AIMS: Chronic liver diseases are associated with the development of liver fibrosis. Without treatment, liver fibrosis commonly leads to cirrhosis and HCC. FGF12 is an intracrine factor belonging to the FGF superfamily, but its role in liver homeostasis is largely unknown. This study aimed to investigate the role of FGF12 in the regulation of liver fibrosis. APPROACH AND RESULTS: FGF12 was up-regulated in bile duct ligation (BDL)-induced and CCL 4 -induced liver fibrosis mouse models. Expression of FGF12 was specifically up-regulated in nonparenchymal liver cells, especially in hepatic macrophages. By constructing myeloid-specific FGF12 knockout mice, we found that deletion of FGF12 in macrophages protected against BDL-induced and CCL 4 -induced liver fibrosis. Further results revealed that FGF12 deletion dramatically decreased the population of lymphocyte antigen 6 complex locus C high macrophages in mouse fibrotic liver tissue and reduced the expression of proinflammatory cytokines and chemokines. Meanwhile, loss-of-function and gain-of-function approaches revealed that FGF12 promoted the proinflammatory activation of macrophages, thus inducing HSC activation mainly through the monocyte chemoattractant protein-1/chemokine (C-C motif) receptor 2 axis. Further experiments indicated that the regulation of macrophage activation by FGF12 was mainly mediated through the Janus kinase-signal transducer of activators of transcription pathway. Finally, the results revealed that FGF12 expression correlates with the severity of fibrosis across the spectrum of fibrogenesis in human liver samples. CONCLUSIONS: FGF12 promotes liver fibrosis progression. Therapeutic approaches to inhibit macrophage FGF12 may be used to combat liver fibrosis in the future.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Humanos , Animais , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Cirrose Hepática/patologia , Fígado/patologia , Macrófagos/metabolismo , Camundongos Knockout , Camundongos Endogâmicos C57BL , Células Estreladas do Fígado/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo
2.
Pharmacol Res ; 178: 106139, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35202822

RESUMO

Liver fibrosis, which is characterized by excessive accumulation of extracellular matrix (ECM) primarily produced by hepatic stellate cells (HSCs), can eventually lead to cirrhosis. Fibroblast growth factor 18 (FGF18) mediates various biological activities. However, the precise role of FGF18 in the pathological process of liver fibrosis and the underlying mechanisms have not been elucidated. In this study, we found that FGF18 was markedly upregulated in carbon tetrachloride (CCl4)-induced fibrotic mouse liver tissues and transforming growth factor ß (TGF-ß) stimulated LX-2 cells. Furthermore, our studies demonstrated that overexpression of FGF18 in the liver significantly alleviated CCl4-induced fibrosis and inhibited the activation of HSCs, while exacerbated by HSC-specific deletion of FGF18. Mechanistically, FGF18 treatment dramatically activated Hippo signaling pathway by suppressing smoothened (SMO) both in vivo and in vitro. Moreover, the interaction between SMO and LATS1 was crucial for the FGF18 induced protective effects. In conclusion, these results indicated that FGF18 attenuates liver fibrosis at least partially via the SMO-LATS1-YAP signaling pathway and therefore may be a potential therapeutic target for liver fibrosis.


Assuntos
Células Estreladas do Fígado , Cirrose Hepática , Animais , Tetracloreto de Carbono/efeitos adversos , Tetracloreto de Carbono/metabolismo , Fatores de Crescimento de Fibroblastos , Células Estreladas do Fígado/metabolismo , Fígado/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Camundongos , Proteínas Serina-Treonina Quinases , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
3.
J Cell Mol Med ; 25(6): 2944-2955, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33523605

RESUMO

Myocardial infarction (MI) commonly leads to cardiomyocyte apoptosis and heart failure. Mangiferin is a natural glucosylxanthone extracted from mango fruits and leaves, which has anti-apoptotic and anti-inflammatory properties in experimental cardiovascular diseases. In the present study, we investigated the role and detailed mechanism of mangiferin in MI. We used ligation of the left anterior descending coronary artery to establish an MI model in vivo, and cardiomyocyte-specific Sirt1 knockout mice were used to identify the mechanism of mangiferin. For in vitro studies, oxygen and glucose deprivation (OGD) was used to mimic ischaemia in H9c2 cardiomyocytes. In mice, mangiferin treatment increased Sirt1 expression after MI, significantly reduced the infarct area, and prevented MI-induced apoptosis and heart failure. Mangiferin reduced OGD-induced cellular apoptosis in H9c2 cells. Meanwhile, Sirt1 knockout/silencing abolished the protective effects of mangiferin. Further studies revealed that mangiferin increased FoxO3a deacetylation by up-regulating Sirt1, thus preventing apoptosis, and adenovirus-mediated constitutive acetylation of FoxO3a restricted the anti-apoptotic effects of mangiferin in vivo and in vitro. Our results indicate that mangiferin prevents cardiomyocyte apoptosis and the subsequent heart failure by activating the Sirt1/FoxO3a pathway in MI, and suggest that mangiferin may have an interesting potential in following studies towards clinical evaluation.


Assuntos
Apoptose/efeitos dos fármacos , Proteína Forkhead Box O3/metabolismo , Insuficiência Cardíaca/metabolismo , Infarto do Miocárdio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/metabolismo , Xantonas/farmacologia , Animais , Biomarcadores , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/patologia , Camundongos , Camundongos Transgênicos , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo
4.
Int J Mol Sci ; 22(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919218

RESUMO

Metallothioneins (MTs) are intracellular cysteine-rich proteins, and their expressions are enhanced under stress conditions. MTs are recognized as having the ability to regulate redox balance in living organisms; however, their role in regulating osteoblast differentiation is still unclear. In this research, we found that the expression of MT3, one member of the MT protein family, was specifically upregulated in the differentiation process of C2C12 myoblasts treated with bone morphogenetic protein 4 (BMP4). Transfection with MT3-overexpressing plasmids in C2C12 cells enhanced their differentiation to osteoblasts, together with upregulating the protein expression of bone specific transcription factors runt-related gene 2 (Runx2), Osterix, and distal-less homeobox 5 (Dlx5). Additionally, MT3 knockdown performed the opposite. Further studies revealed that overexpression of MT3 decreased reactive oxygen species (ROS) production in C2C12 cells treated with BMP4, and MT3 silencing enhanced ROS production. Treating C2C12 cells with antioxidant N-acetylcysteine also promoted osteoblast differentiation, and upregulated Runx2/Osterix/Dlx5, while ROS generator antimycin A treatment performed the opposite. Finally, antimycin A treatment inhibited osteoblast differentiation and Runx2/Osterix/Dlx5 expression in MT3-overexpressing C2C12 cells. These findings identify the role of MT3 in osteoblast differentiation and indicate that MT3 may have interesting potential in the field of osteogenesis research.


Assuntos
Diferenciação Celular , Regulação da Expressão Gênica , Mioblastos/citologia , Proteínas do Tecido Nervoso/metabolismo , Osteoblastos/citologia , Osteogênese , Estresse Oxidativo , Animais , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Células Cultivadas , Metalotioneína 3 , Camundongos , Mioblastos/metabolismo , Proteínas do Tecido Nervoso/genética , Osteoblastos/metabolismo
5.
J Cell Mol Med ; 21(12): 3420-3434, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28643395

RESUMO

Catalase is an antioxidative enzyme that converts hydrogen peroxide (H2 O2 ) produced by superoxide dismutase from highly reactive superoxide (O2- ) to water and oxygen molecules. Although recent findings demonstrate that catalase, autophagy and the nuclear factor κB (NF-κB) signalling pathway are centrally involved in diabetic cardiomyopathy (DCM), the interplay between the three has not been fully characterized. Thus, the mechanism responsible for catalase-mediated protection against heart injury in diabetic mice was investigated in this study, as well as the role of NF-κB-p65 in the regulation of autophagic flux was investigated in this study. Western blot analysis revealed that catalase inhibited NF-κB activity and decreased LC3-II (microtubule-associated protein 1 light chain 3) and beclin-1 (Atg6) expression. Furthermore, up-regulation of autophagy was detrimental for cardiac function in diabetic mice. Catalase overexpression reduced the level of NF-κB subunit in the nucleus, where it initiates autophagy through activation of the key autophagy gene BECN1. To evaluate the role of the NF-κB pathway in diabetes-induced autophagy, Bay11-7082, an NF-κB inhibitor, was injected into diabetic mice, which suppressed NF-κB and attenuated diabetes-induced autophagy and myocardial apoptosis. In agreement with the in vivo results, Bay11-7082 also inhibited high-glucose-induced activation of NF-κB and the up-regulation of LC3-II and beclin-1 expression in H9c2 cells. In addition, high-glucose-induced activation of autophagic flux and apoptosis were largely attenuated by p65 siRNA, suggesting that catalase ameliorates diabetes-induced autophagy, at least in part by increasing the activity of the NF-κB pathway and p65-mediated transcription of BECN1.


Assuntos
Proteína Beclina-1/genética , Catalase/genética , Diabetes Mellitus Experimental/genética , Cardiomiopatias Diabéticas/genética , Proteínas Associadas aos Microtúbulos/genética , Fator de Transcrição RelA/genética , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteína Beclina-1/metabolismo , Catalase/metabolismo , Linhagem Celular , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/patologia , Cardiomiopatias Diabéticas/induzido quimicamente , Cardiomiopatias Diabéticas/enzimologia , Cardiomiopatias Diabéticas/patologia , Regulação da Expressão Gênica , Glucose/farmacologia , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Nitrilas/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Estreptozocina , Sulfonas/farmacologia , Fator de Transcrição RelA/antagonistas & inibidores , Fator de Transcrição RelA/metabolismo , Transcrição Gênica
6.
Br J Pharmacol ; 180(1): 44-61, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36070072

RESUMO

BACKGROUND AND PURPOSE: Liver fibrosis is a serious cause of morbidity and mortality worldwide characterized by accumulation of extracellular matrix produced by hepatic stellate cells (HSCs). The protein kinase CK2 is a pro-survival kinase overexpressed in human tumours. However, the biological role of CK2 in liver fibrosis is largely unknown. We aimed to investigate the mechanism by which CK2 promotes liver fibrosis. EXPERIMENTAL APPROACH: In vitro, LX-2 cells were stimulated with transforming growth factor-ß (TGF-ß). HSCs were also isolated for research. In vivo, the adeno-associated virus AAV-sh-csnk2a1 was used to knockdown CK2α specifically in HSCs, and CX-4945 was used to pharmacologically inhibit the enzymatic activity of CK2 in murine models of fibrosis induced by carbon tetrachloride (CCl4 ) and a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet. Histological and biochemical analyses were performed to study the involvement of CK2 in regulation of fibrogenic and fibrolytic factors as well as activation properties of HSCs. KEY RESULTS: HSC-specific genetic invalidation of CK2α or pharmacological inhibition of CK2 protected mice treated with CCl4 or fed a DDC diet against liver fibrosis and HSC accumulation. Mechanistically, CK2α, which bound to Smoothened (SMO), was a positive regulator of the Hedgehog signal transduction pathway. CK2 prevented ubiquitination and proteasomal degradation of SMO, which was abolished by knockdown of CK2α or pharmacological inhibition of CK2. CONCLUSIONS AND IMPLICATIONS: CK2 activation is critical to sustain the activated and fibrogenic phenotype of HSCs via SMO stabilization. Therefore, inactivation of CK2 by CX-4945 may be of therapeutic interest for liver fibrotic diseases.


Assuntos
Proteínas Hedgehog , Células Estreladas do Fígado , Camundongos , Humanos , Animais , Células Estreladas do Fígado/metabolismo , Proteínas Hedgehog/metabolismo , Caseína Quinase II/efeitos adversos , Caseína Quinase II/metabolismo , Fígado/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Tetracloreto de Carbono , Fibrose
7.
Nat Commun ; 14(1): 6107, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777507

RESUMO

Hepatic ischemia-reperfusion injury (IRI) is a common complication occurs during hepatic resection and transplantation. However, the mechanisms underlying hepatic IRI have not been fully elucidated. Here, we aim to explore the role of fibroblast growth factor 18 (FGF18) in hepatic IRI. In this work, we find that Hepatic stellate cells (HSCs) secrete FGF18 and alleviates hepatocytes injury. HSCs-specific FGF18 deletion largely aggravates hepatic IRI. Mechanistically, FGF18 treatment reduces the levels of ubiquitin carboxyl-terminal hydrolase 16 (USP16), leading to increased ubiquitination levels of Kelch Like ECH Associated Protein 1 (KEAP1) and the activation of nuclear factor erythroid 2-related factor 2 (Nrf2). Furthermore, USP16 interacts and deubiquitinates KEAP1. More importantly, Nrf2 directly binds to the promoter of USP16 and forms a negative feedback loop with USP16. Collectively, our results show FGF18 alleviates hepatic IRI by USP16/KEAP1/Nrf2 signaling pathway in male mice, suggesting that FGF18 represents a promising therapeutic approach for hepatic IRI.


Assuntos
Fator 2 Relacionado a NF-E2 , Traumatismo por Reperfusão , Animais , Masculino , Camundongos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/genética , Transdução de Sinais
8.
Redox Biol ; 40: 101859, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33445067

RESUMO

Hepatic ischemia-reperfusion injury (IRI) is a major complication of liver surgery and transplantation. IRI leads to hepatic parenchymal cell death, resulting in liver failure, and lacks effective therapeutic approaches. Fibroblast growth factor 10 (FGF10) is a paracrine factor which is well-characterized with respect to its pro-proliferative effects during embryonic liver development and liver regeneration, but its role in hepatic IRI remains unknown. In this study, we investigated the role of FGF10 in liver IRI and identified signaling pathways regulated by FGF10. In a mouse model of warm liver IRI, FGF10 was highly expressed during the reperfusion phase. In vitro experiments demonstrated that FGF10 was primarily secreted by hepatic stellate cells and acted on hepatocytes. The role of FGF10 in liver IRI was further examined using adeno-associated virus-mediated gene silencing and overexpression. Overexpression of FGF10 alleviated liver dysfunction, reduced necrosis and inflammation, and protected hepatocytes from apoptosis in the early acute injury phase of IRI. Furthermore, in the late phase of IRI, FGF10 overexpression also promoted hepatocyte proliferation. Meanwhile, gene silencing of FGF10 had the opposite effect. Further studies revealed that overexpression of FGF10 activated nuclear factor-erythroid 2-related factor 2 (NRF2) and decreased oxidative stress, mainly through activation of the phosphatidylinositol-3-kinase/AKT pathway, and the protective effects of FGF10 overexpression were largely abrogated in NRF2 knockout mice. These results demonstrate the protective effects of FGF10 in liver IRI, and reveal the important role of NRF2 in FGF10-mediated hepatic protection during IRI.


Assuntos
Traumatismo por Reperfusão , Animais , Apoptose , Fator 10 de Crescimento de Fibroblastos , Hepatócitos , Fígado , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismo por Reperfusão/genética
9.
Antioxid Redox Signal ; 31(5): 403-419, 2019 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-30860395

RESUMO

Aims: Cardiac-specific overexpression of metallothionein (MT) has been shown to be beneficial in ischemic heart disease, but the detailed mechanisms through which MT protects against myocardial infarction (MI) remain unknown. This study assessed the involvement of the mTORC2/FoxO3a/Bim pathway in the cardioprotective effects of MT. Results: MI was induced in wild-type (FVB) mice and in cardiac-specific MT-overexpressing transgenic (MT-TG) mice by ligation of the left anterior descending (LAD) coronary artery. Cardiac function was better; infarct size and cardiomyocyte apoptosis were lower in MT-TG mice than in FVB mice after MI. Moreover, MT-TG mice exhibited better phenotypes after LAD ligation than FVB mice treated with Mn(III)tetrakis (1-methyl-4-pyridyl) porphyrin pentachloride (MnTMPyP; a reactive oxygen species [ROS] scavenger) and cardiac-specific catalase-overexpressing transgenic (CAT-TG) mice, which showed the same ROS levels as MT-TG mice after MI. Activation of mechanistic target of rapamycin complex 2 (mTORC2) was essential for the cardioprotective effects of MT against MI. In addition, MT attenuated the downregulation of phospho-FoxO3a after MI, inhibiting the expression of the apoptosis-associated gene Bim, located downstream of FoxO3a, and reducing the level of apoptosis after MI. To mimic ischemic-injured FVB and MT-TG mice in vitro, H9c2 and MT-overexpressing H9c2 (H9c2MT7) cardiomyocytes were subjected to oxygen and glucose deprivation, with the results being consistent with those obtained in vivo. Innovation and Conclusion: The cardioprotective effects of MT against MI are not entirely dependent upon its ability to eliminate ROS. Rather, MT overexpression mostly protects against MI through the mTORC2-FoxO3a-Bim pathway.


Assuntos
Proteína 11 Semelhante a Bcl-2/antagonistas & inibidores , Cardiotônicos/metabolismo , Proteína Forkhead Box O3/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Metalotioneína/metabolismo , Infarto do Miocárdio/metabolismo , Animais , Apoptose , Proteína 11 Semelhante a Bcl-2/genética , Proteína 11 Semelhante a Bcl-2/metabolismo , Células Cultivadas , Coração , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
10.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1241-1252, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30677512

RESUMO

AIMS: This study investigated the mechanism through which fibroblast growth factor 21 (FGF21) protects against angiotensin II (Ang II)-induced cardiac hypertrophy and dysfunction. METHODS: Male silent information regulator 1 (SIRT1) flox/flox and cardiomyocyte-specific inducible SIRT1 knockout mice (SIRT1-iKO) were generated and treated with Ang II (1.1 mg/kg/day for 4 weeks) at the age of 8-12-week-old. FGF21 treatment [2.5 mg/kg/day for 4 weeks by intraperitoneal (i.p.) injection] was initiated at the same time as the Ang II infusion. For in vitro studies, neonatal rat cardiomyocytes (NRCMs), H9c2 rat cardiomyocytes and isolated adult mouse cardiomyocytes were treated with Ang II (1 µM) and FGF21 (20 nM) for 24 h with or without SIRT1 silencing. RESULTS: FGF21 treatment significantly attenuated Ang II-induced cardiac hypertrophy and dysfunction. SIRT1 knockout abolished the ability of FGF21 to prevent Ang II-induced cardiac hypertrophy, fibrosis, and apoptosis, without affecting the beneficial effects of FGF21 in Ang II-induced hypertension, and did not influence the hypertension itself. FGF21 markedly increased the deacetylase activity of SIRT1 and promoted the interaction of SIRT1 with liver kinase B1 (LKB1) and forkhead box protein O1 (FoxO1), resulting in decreased acetylation of these SIRT1 target proteins. Consequently, FGF21 promoted the activation of the LKB1 target adenosine monophosphate-activated protein kinase (AMPK) and altered the transcriptional activity of FoxO1 on its downstream target genes catalase (Cat), MnSOD (Sod2), and Bim, resulting in reduced reactive oxygen species (ROS) accumulation and cardiomyocyte apoptosis. CONCLUSIONS: FGF21 improves cardiac function and alleviates Ang II-induced cardiac hypertrophy in a SIRT1-dependent manner.


Assuntos
Cardiomegalia/prevenção & controle , Fatores de Crescimento de Fibroblastos/administração & dosagem , Miócitos Cardíacos/efeitos dos fármacos , Sirtuína 1/metabolismo , Proteínas Quinases Ativadas por AMP , Angiotensina II , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Apoptose/genética , Cardiomegalia/induzido quimicamente , Cardiomegalia/metabolismo , Linhagem Celular , Células Cultivadas , Expressão Gênica/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/genética , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
11.
Autophagy ; 15(5): 843-870, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30653446

RESUMO

Studies regarding macroautophagic/autophagic regulation in endothelial cells (ECs) under diabetic conditions are very limited. Clinical evidence establishes an endothelial protective effect of metformin, but the underlying mechanisms remain unclear. We aimed to investigate whether metformin exerts its protective role against hyperglycemia-induced endothelial impairment through the autophagy machinery. db/db mice were treated with intravitreal metformin injections. Human umbilical vein endothelial cells (HUVECs) were cultured either in normal glucose (NG, 5.5 mM) or high glucose (HG, 33 mM) medium in the presence or absence of metformin for 72 h. We observed an obvious inhibition of hyperglycemia-triggered autophagosome synthesis in both the diabetic retinal vasculature and cultured HUVECs by metformin, along with restoration of hyperglycemia-impaired Hedgehog (Hh) pathway activity. Specifically, deletion of ATG7 in retinal vascular ECs of db/db mice and cultured HUVECs indicated a detrimental role of autophagy in hyperglycemia-induced endothelial dysfunction. Pretreatment with GANT61, a Hh pathway inhibitor, abolished the metformin-mediated downregulation of autophagy and endothelial protective action. Furthermore, GLI-family (transcription factors of the Hh pathway) knockdown in HUVECs and retinal vasculature revealed that downregulation of hyperglycemia-activated autophagy by the metformin-mediated Hh pathway activation was GLI1 dependent. Mechanistically, GLI1 knockdown-triggered autophagy was related to upregulation of BNIP3, which subsequently disrupted the association of BECN1/Beclin 1 and BCL2. The role of BNIP3 in BECN1 dissociation from BCL2 was further confirmed by BNIP3 overexpression or BNIP3 RNAi. Taken together, the endothelial protective effect of metformin under hyperglycemia conditions could be partly attributed to its role in downregulating autophagy via Hh pathway activation. Abbreviations: 3-MA = 3-methyladenine; 8×GLI BS-FL = 8×GLI-binding site firefly luciferase; AAV = adeno-associated virus; AAV-Cdh5-sh-Atg7 = AAV vectors carrying shRNA against murine Atg7 under control of murine Cdh5 promoter; AAV-Cdh5-sh-Gli1 = AAV vectors carrying shRNA against murine Gli1 under control of murine Cdh5 promoter; AAV-Cdh5-Gli1 = AAV vectors carrying murine Gli1 cDNA under the control of murine Cdh5 core promoter; ACAC = acetyl-CoA carboxylase; Ad-BNIP3 = adenoviruses harboring human BNIP3`; Ad-GLI1 = adenoviruses harboring human GLI1; Ad-sh-ATG7 = adenoviruses harboring shRNA against human ATG7; Ad-sh-BNIP3 = adenoviruses harboring shRNA against human BNIP3; Ad-sh-GLI = adenoviruses harboring shRNA against human GLI; AGEs = advanced glycation end products; ATG = autophagy-related; atg7flox/flox mice = mice bearing an Atg7flox allele, in which exon 14 of the Atg7 gene is flanked by 2 loxP sites; BafA1 = bafilomycin A1; BECN1 = beclin 1; CDH5/VE-cadherin = cadherin 5; CASP3 = caspase 3; CASP8 = caspase 8; CASP9 = caspase 9; ECs = endothelial cells; GAPDH = glyceraldehyde-3-phosphate dehydrogenase; GCL = ganglion cell layer; GFP-LC3B = green fluorescent protein labelled LC3B; HG = high glucose; Hh = Hedgehog; HHIP = hedgehog interacting protein; HUVECs = human umbilical vein endothelial cells; IB4 = isolectin B4; INL = inner nuclear layer; i.p. = intraperitoneal; MAP1LC3/LC3 = microtubule-associated protein 1 light chain 3; MAN = mannitol; MET = metformin; NG = normal glucose; ONL = outer nuclear layer; p-ACAC = phosphorylated acetyl-CoA carboxylase; PECAM1/CD31= platelet/endothelial cell adhesion molecule 1; PRKAA1/2 = protein kinase AMP-activated catalytic subunits alpha 1/2; p-PRKAA1/2 = phosphorylated PRKAA1/2; PTCH1 = patched 1; RAPA = rapamycin; RL = Renilla luciferase; SHH = sonic hedgehog; shRNA = short hairpin RNA; sh-PRKAA1/2 = short hairpin RNA against human PRKAA1/2; scrambled shRNA = the scrambled short hairpin RNA serves as a negative control for the target-specific short hairpin RNA, which has the same nucleotide composition as the input sequence and has no match with any mRNA of the selected organism database; SMO = smoothened, frizzled class receptor; sqRT-PCR = semi-quantitative RT-PCR; TEK/Tie2 = TEK receptor tyrosine kinase; Tek-Cre (+) mice = a mouse strain expressing Cre recombinase under the control of the promoter/enhancer of Tek, in a pan-endothelial fashion; TUNEL = terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling.


Assuntos
Autofagia/efeitos dos fármacos , Angiopatias Diabéticas/prevenção & controle , Endotélio Vascular/efeitos dos fármacos , Proteínas Hedgehog/metabolismo , Hiperglicemia/complicações , Metformina/farmacologia , Animais , Autofagia/genética , Permeabilidade Capilar/efeitos dos fármacos , Permeabilidade Capilar/genética , Células Cultivadas , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/fisiopatologia , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/patologia , Angiopatias Diabéticas/fisiopatologia , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Proteínas Hedgehog/efeitos dos fármacos , Proteínas Hedgehog/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Hiperglicemia/fisiopatologia , Metformina/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Retina/efeitos dos fármacos , Retina/metabolismo , Retina/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
12.
J Endocrinol ; 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30400057

RESUMO

Baicalin is the major component found in Scutellaria baicalensis root, a widely used herb in traditional Chinese medicine, which exhibits strong anti-inflammatory, anti-viral and anti-tumor activities. The present work was devoted to elucidate the molecular and cellular mechanisms underlying the protective effects of Baicalin against diabetes-induced oxidative damage, inflammation and endothelial dysfunction. Diabetic mice, induced by streptozotocin (STZ), were treated with intraperitoneal Baicalin injections. Human umbilical vein endothelial cells (HUVECs) were cultured either in normal glucose (NG, 5.5 mM) or high glucose (HG, 33 mM) medium in the presence or absence of Baicalin for 72 h. We observed an obvious inhibition of hyperglycemia-triggered oxidative damage and inflammation in HUVECs and diabetic aortal vasculature by Baicalin, along with restoration of hyperglycemia-impaired nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway activity. However, the protective effects of Baicalin almost completely abolished in HUVECs transduced with shRNA against Nrf2, but not with nonsense shRNA. Mechanistic studies demonstrated that HG decreased Akt and GSK3B phosphorylation, restrained nuclear export of Fyn and nuclear localization of Nrf2, blunted Nrf2 downstream target genes, and subsequently induced oxidative stress in HUVECs. However, those destructive cascade, were well prevented by Baicalin in HUVECs. Furthermore, LY294002 and ML385 (inhibitor of PI3K and Nrf2) attenuated Baicalin mediated Nrf2 activation and the ability of facilitates angiogenesis in vivo and ex vivo. Taken together, the endothelial protective effect of Baicalin under hyperglycemia condition could be partly attributed to its role in downregulating reactive oxygen species (ROS) and inflammation via the Akt/GSK3B/Fyn-mediated Nrf2 activation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA