Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38473348

RESUMO

Oral cancer, a pervasive and rapidly growing malignant disease, poses a significant global health concern. Early and accurate diagnosis is pivotal for improving patient outcomes. Automatic diagnosis methods based on artificial intelligence have shown promising results in the oral cancer field, but the accuracy still needs to be improved for realistic diagnostic scenarios. Vision Transformers (ViT) have outperformed learning CNN models recently in many computer vision benchmark tasks. This study explores the effectiveness of the Vision Transformer and the Swin Transformer, two cutting-edge variants of the transformer architecture, for the mobile-based oral cancer image classification application. The pre-trained Swin transformer model achieved 88.7% accuracy in the binary classification task, outperforming the ViT model by 2.3%, while the conventional convolutional network model VGG19 and ResNet50 achieved 85.2% and 84.5% accuracy. Our experiments demonstrate that these transformer-based architectures outperform traditional convolutional neural networks in terms of oral cancer image classification, and underscore the potential of the ViT and the Swin Transformer in advancing the state of the art in oral cancer image analysis.

2.
Aging (Albany NY) ; 16(6): 5501-5525, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38517390

RESUMO

The endoplasmic reticulum (ER) membrane protein complex (EMC) is a conserved, multi-subunit complex acting as an insertase at the ER membrane. Growing evidence shows that the EMC is also involved in stabilizing and trafficking membrane proteins. However, the structural basis and regulation of its multifunctionality remain elusive. Here, we report cryo-electron microscopy structures of human EMC in apo- and voltage-dependent anion channel (VDAC)-bound states at resolutions of 3.47 Å and 3.32 Å, respectively. We discovered a specific interaction between VDAC proteins and the EMC at mitochondria-ER contact sites, which is conserved from yeast to humans. Moreover, we identified a gating plug located inside the EMC hydrophilic vestibule, the substrate-binding pocket for client insertion. Conformation changes of this gating plug during the apo-to-VDAC-bound transition reveal that the EMC unlikely acts as an insertase in the VDAC1-bound state. Based on the data analysis, the gating plug may regulate EMC functions by modifying the hydrophilic vestibule in different states. Our discovery offers valuable insights into the structural basis of EMC's multifunctionality.


Assuntos
Retículo Endoplasmático , Canais de Ânion Dependentes de Voltagem , Humanos , Microscopia Crioeletrônica , Canais de Ânion Dependentes de Voltagem/metabolismo , Retículo Endoplasmático/metabolismo , Saccharomyces cerevisiae
3.
Nat Commun ; 15(1): 6134, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033175

RESUMO

Anion exchanger 3 (AE3) is pivotal in regulating intracellular pH across excitable tissues, yet its structural intricacies and functional dynamics remain underexplored compared to other anion exchangers. This study unveils the structural insights into human AE3, including the cryo-electron microscopy structures for AE3 transmembrane domains (TMD) and a chimera combining AE3 N-terminal domain (NTD) with AE2 TMD (hAE3NTD2TMD). Our analyzes reveal a substrate binding site, an NTD-TMD interlock mechanism, and a preference for an outward-facing conformation. Unlike AE2, which has more robust acid-loading capabilities, AE3's structure, including a less stable inward-facing conformation due to missing key NTD-TMD interactions, contributes to its moderated pH-modulating activity and increased sensitivity to the inhibitor DIDS. These structural differences underline AE3's distinct functional roles in specific tissues and underscore the complex interplay between structural dynamics and functional specificity within the anion exchanger family, enhancing our understanding of the physiological and pathological roles of the anion exchanger family.


Assuntos
Antiporters , Humanos , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Sítios de Ligação , Microscopia Crioeletrônica , Células HEK293 , Concentração de Íons de Hidrogênio , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Antiporters/química , Antiporters/ultraestrutura
4.
Nat Struct Mol Biol ; 31(6): 884-895, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38388831

RESUMO

Sphingomyelin (SM) has key roles in modulating mammalian membrane properties and serves as an important pool for bioactive molecules. SM biosynthesis is mediated by the sphingomyelin synthase (SMS) family, comprising SMS1, SMS2 and SMS-related (SMSr) members. Although SMS1 and SMS2 exhibit SMS activity, SMSr possesses ceramide phosphoethanolamine synthase activity. Here we determined the cryo-electron microscopic structures of human SMSr in complexes with ceramide, diacylglycerol/phosphoethanolamine and ceramide/phosphoethanolamine (CPE). The structures revealed a hexameric arrangement with a reaction chamber located between the transmembrane helices. Within this structure, a catalytic pentad E-H/D-H-D was identified, situated at the interface between the lipophilic and hydrophilic segments of the reaction chamber. Additionally, the study unveiled the two-step synthesis process catalyzed by SMSr, involving PE-PLC (phosphatidylethanolamine-phospholipase C) hydrolysis and the subsequent transfer of the phosphoethanolamine moiety to ceramide. This research provides insights into the catalytic mechanism of SMSr and expands our understanding of sphingolipid metabolism.


Assuntos
Microscopia Crioeletrônica , Modelos Moleculares , Esfingomielinas , Transferases (Outros Grupos de Fosfato Substituídos) , Humanos , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/química , Esfingomielinas/metabolismo , Esfingomielinas/química , Esfingomielinas/biossíntese , Ceramidas/metabolismo , Ceramidas/química , Etanolaminas/metabolismo , Etanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosfatidiletanolaminas/química , Diglicerídeos/metabolismo , Diglicerídeos/química , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas de Membrana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA