Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Metab Eng ; 51: 70-78, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30339834

RESUMO

C-2α hydroxylated triterpenoids are a large class of plant secondary metabolites. These compounds, such as maslinic, corosolic and alphitolic acid, have important biological activities against HIV, cancer and diabetes. However, the biosynthesis pathways of these compounds have not been completely elucidated. Specifically, the cytochrome P450 (CYP) enzyme responsible for C-2α hydroxylation was unknown. In this study, a novel CYP enzyme that catalyzes C-2α hydroxylation was identified in Crataegus pinnatifida (Hawthorn) using a metabolic engineering platform. It is a multifunctional enzyme with C-2α oxidase activity on oleanane-, ursane- and lupane-type pentacyclic triterpenoids. In addition, the complete biosynthesis pathways of these three triterpenoids were reconstituted in yeast, resulting in the production of 384, 141 and 23 mg/L of maslinic, corosolic and alphitolic acid, respectively. This metabolic engineering platform for functional gene identification and strain engineering can serve as the basis for creating alternative pathways for the microbial production of important natural products.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Saccharomyces cerevisiae/metabolismo , Triterpenos/metabolismo , Reatores Biológicos , Catálise , Crataegus/enzimologia , Crataegus/genética , Sistema Enzimático do Citocromo P-450/genética , Hidroxilação , Engenharia Metabólica , Plasmídeos/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética
2.
Zhongguo Zhong Yao Za Zhi ; 42(17): 3326-3331, 2017 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-29192442

RESUMO

Cucurbitadienol has anti-inflammation, anti-cancer activities, and acts as a precursor of traditional Chinese medicine active ingredients mogroside and cucurbitacine. For construction of a Sacchromyces cerevisiae cell factory for production of cucurbitadienol, we firstly cloned a cucurbitadienol synthase (CBS) gene from Siraitia grosvenorii. Then, through heterologous expression of CBS in the triterpenoid chassis strain WD-2091, the engineered strain could produced 27.44 mg•L ⁻¹ cucurbitadienol, which was determined by GC-MS. Further regulation of CBS expression led to cucurbitadienol's titer increasing by 202.07% and reaching 82.89 mg•L ⁻¹ in the shake flask fermentation and 1 724.10 mg•L ⁻¹ in the high cell density fermentation. Our research promotes the cucurbitane-type tetracyclic triterpenoids synthesis pathway analysis progress and provides the basis for further obtaining cell factories for production of cucurbitadienol tetracyclic triterpenoids.


Assuntos
Cucurbitaceae/enzimologia , Triterpenos/metabolismo , Fermentação , Cromatografia Gasosa-Espectrometria de Massas , Microbiologia Industrial , Microrganismos Geneticamente Modificados , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA