Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Cell ; 184(17): 4579-4592.e24, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34297925

RESUMO

Antibacterial agents target the products of essential genes but rarely achieve complete target inhibition. Thus, the all-or-none definition of essentiality afforded by traditional genetic approaches fails to discern the most attractive bacterial targets: those whose incomplete inhibition results in major fitness costs. In contrast, gene "vulnerability" is a continuous, quantifiable trait that relates the magnitude of gene inhibition to the effect on bacterial fitness. We developed a CRISPR interference-based functional genomics method to systematically titrate gene expression in Mycobacterium tuberculosis (Mtb) and monitor fitness outcomes. We identified highly vulnerable genes in various processes, including novel targets unexplored for drug discovery. Equally important, we identified invulnerable essential genes, potentially explaining failed drug discovery efforts. Comparison of vulnerability between the reference and a hypervirulent Mtb isolate revealed incomplete conservation of vulnerability and that differential vulnerability can predict differential antibacterial susceptibility. Our results quantitatively redefine essential bacterial processes and identify high-value targets for drug development.


Assuntos
Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Mycobacterium tuberculosis/genética , Aminoacil-tRNA Sintetases/metabolismo , Antituberculosos/farmacologia , Teorema de Bayes , Evolução Biológica , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , RNA Guia de Cinetoplastídeos/genética
2.
Nature ; 627(8003): 424-430, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418874

RESUMO

Mycobacterium tuberculosis (Mtb) is a bacterial pathogen that causes tuberculosis (TB), an infectious disease that is responsible for major health and economic costs worldwide1. Mtb encounters diverse environments during its life cycle and responds to these changes largely by reprogramming its transcriptional output2. However, the mechanisms of Mtb transcription and how they are regulated remain poorly understood. Here we use a sequencing method that simultaneously determines both termini of individual RNA molecules in bacterial cells3 to profile the Mtb transcriptome at high resolution. Unexpectedly, we find that most Mtb transcripts are incomplete, with their 5' ends aligned at transcription start sites and 3' ends located 200-500 nucleotides downstream. We show that these short RNAs are mainly associated with paused RNA polymerases (RNAPs) rather than being products of premature termination. We further show that the high propensity of Mtb RNAP to pause early in transcription relies on the binding of the σ-factor. Finally, we show that a translating ribosome promotes transcription elongation, revealing a potential role for transcription-translation coupling in controlling Mtb gene expression. In sum, our findings depict a mycobacterial transcriptome that prominently features incomplete transcripts resulting from RNAP pausing. We propose that the pausing phase constitutes an important transcriptional checkpoint in Mtb that allows the bacterium to adapt to environmental changes and could be exploited for TB therapeutics.


Assuntos
Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis , RNA Bacteriano , Transcriptoma , RNA Polimerases Dirigidas por DNA/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , RNA Bacteriano/análise , RNA Bacteriano/biossíntese , RNA Bacteriano/genética , Transcriptoma/genética , Tuberculose/microbiologia , RNA Mensageiro/análise , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Sítio de Iniciação de Transcrição , Fator sigma/metabolismo , Ribossomos/metabolismo , Biossíntese de Proteínas
3.
Anal Chem ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315069

RESUMO

To enhance our comprehension of the fundamental mechanisms driving tumor metabolism and metastasis, it is essential to dynamically monitor intratumoral lipid droplet (LD) and collagen processes in vivo. Traditional LD analysis in tumors predominantly relies on observations of in vitro cells or tissue slices, which unfortunately hinder real-time insights into the dynamic behavior of LDs during in vivo tumor progression. In this study, we developed a dual-modality imaging technique that combines coherent anti-Stokes Raman scattering (CARS) and second-harmonic generation (SHG) microscopy for in vivo monitoring of tumor LDs and collagen alterations, assisted by a murine breast cancer 4T1 cell-based dorsal skinfold window. Specifically, we accomplished real-time observations and quantitative analysis of the LD size, density, and collagen alignment within living tumors through CARS/SHG imaging. Additionally, our findings demonstrate that real-time LD monitoring provides a valuable means of assessing the efficacy of anticancer drugs in vivo. We evaluated the impact of adipose activators on lipid metabolism, oxidative stress, and tumor suppression by monitoring changes in LD size and density. Overall, this study highlights the potential of dual-modality CARS/SHG microscopy as a sensitive and flexible tool for antitumor therapeutic strategies.

4.
Opt Lett ; 49(11): 2950-2953, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824300

RESUMO

Phase unwrapping (PU) algorithms play a crucial role in various phase measurement techniques. Traditional algorithms cannot work well in strong noise environments, which makes it very difficult to obtain the accurate absolute phase from the noisy wrapped phase. In this Letter, we introduce a novel, to the best of our knowledge, phase unwrapping algorithm named PD-VHS. This algorithm innovatively employs point spread function (PSF) filtering to eliminate noise from the wrapped phase. Furthermore, it combines a phase diversity (PD) wavefront reconstruction technology with a virtual Hartmann-Shack (VHS) technology for phase reconstruction and phase unwrapping of the filtered PSFs. In simulations, hundreds of random noise wrapped phases, containing the first 45 Zernike polynomials (excluding piston and the two tilt terms) and the wavefront RMS = 0.5λ and 1λ, are used to compare the classical quality-map guided algorithm, the VHS algorithm with decent noise immunity, with our PD-VHS algorithm. When signal-to-noise ratio (SNR) drops to just 2 dB, the mean root mean square errors (RMSEs) of the residual wavefront between the unwrapped result and the absolute phase of the quality-map guided algorithm and the VHS algorithm are up to 3.99λ, 0.44λ, 4.29λ, and 0.85λ, respectively; however, our algorithm RMSEs are low: 0.11λ and 0.17λ. Simulation results demonstrated that the PD-VHS algorithm significantly outperforms the quality-map guided algorithm and the VHS algorithm under large-scale noise conditions.

5.
BMC Cancer ; 24(1): 580, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735973

RESUMO

BACKGROUND: SRSF1, a member of Serine/Arginine-Rich Splicing Factors (SRSFs), has been observed to significantly influence cancer progression. However, the precise role of SRSF1 in osteosarcoma (OS) remains unclear. This study aims to investigate the functions of SRSF1 and its underlying mechanism in OS. METHODS: SRSF1 expression level in OS was evaluated on the TCGA dataset, TAGET-OS database. qRT-PCR and Western blotting were employed to assess SRSF1 expression in human OS cell lines as well as the interfered ectopic expression states. The effect of SRSF1 on cell migration, invasion, proliferation, and apoptosis of OS cells were measured by transwell assay and flow cytometry. RNA sequence and bioinformatic analyses were conducted to elucidate the targeted genes, relevant biological pathways, and alternative splicing (AS) events regulated by SRSF1. RESULTS: SRSF1 expression was consistently upregulated in both OS samples and OS cell lines. Diminishing SRSF1 resulted in reduced proliferation, migration, and invasion and increased apoptosis in OS cells while overexpressing SRSF1 led to enhanced growth, migration, invasion, and decreased apoptosis. Mechanistically, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and Gene Set Enrichment Analysis (GSEA) revealed that the biological functions of SRSF1 were closely associated with the dysregulation of the protein targeting processes, location of the cytosolic ribosome, extracellular matrix (ECM), and proteinaceous extracellular matrix, along with the PI3K-AKT pathway, Wnt pathway, and HIPPO pathway. Transcriptome analysis identified AS events modulated by SRSF1, especially (Skipped Exon) SE events and (Mutually exclusive Exons) MXE events, revealing potential roles of targeted molecules in mRNA surveillance, RNA degradation, and RNA transport during OS development. qRT-PCR confirmed that SRSF1 knockdown resulted in the occurrence of alternative splicing of SRRM2, DMKN, and SCAT1 in OS. CONCLUSIONS: Our results highlight the oncogenic role of high SRSF1 expression in promoting OS progression, and further explore the potential mechanisms of action. The significant involvement of SRSF1 in OS development suggests its potential utility as a therapeutic target in OS.


Assuntos
Apoptose , Neoplasias Ósseas , Movimento Celular , Proliferação de Células , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Osteossarcoma , Fatores de Processamento de Serina-Arginina , Humanos , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Osteossarcoma/genética , Osteossarcoma/patologia , Osteossarcoma/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Neoplasias Ósseas/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , Apoptose/genética , Movimento Celular/genética , Regulação para Cima , Processamento Alternativo
6.
Eur Radiol ; 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38308013

RESUMO

OBJECTIVE: The prognostic stratification for oral tongue squamous cell carcinoma (OTSCC) is heavily based on postoperative pathological depth of invasion (pDOI). This study aims to propose a preoperative MR T-staging system based on tumor size for non-pT4 OTSCC. METHODS: Retrospectively, 280 patients with biopsy-confirmed, non-metastatic, pT1-3 OTSCC, treated between January 2010 and December 2017, were evaluated. Multiple MR sequences, including axial T2-weighted imaging (WI), unenhanced T1WI, and axial, fat-suppressed coronal, and sagittal contrast-enhanced (CE) T1WI, were utilized to measure radiological depth of invasion (rDOI), tumor thickness, and largest diameter. Intra-class correlation (ICC) and univariate and multivariate analyses were used to evaluate measurement reproducibility, and factors' significance, respectively. Cutoff values were established using an exhaustive method. RESULTS: Intra-observer (ICC = 0.81-0.94) and inter-observer (ICC = 0.79-0.90) reliability were excellent for rDOI measurements, and all measurements were significantly associated with overall survival (OS) (all p < .001). Measuring the rDOI on axial CE-T1WI with cutoffs of 8 mm and 12 mm yielded an optimal MR T-staging system for rT1-3 disease (5-year OS of rT1 vs rT2 vs rT3: 94.0% vs 72.8% vs 57.5%). Using multivariate analyses, the proposed T-staging exhibited increasingly worse OS (hazard ratio of rT2 and rT3 versus rT1, 3.56 [1.35-9.6], p = .011; 4.33 [1.59-11.74], p = .004; respectively), which outperformed pathological T-staging based on nonoverlapping Kaplan-Meier curves and improved C-index (0.682 vs. 0.639, p < .001). CONCLUSIONS: rDOI is a critical predictor of OTSCC mortality and facilitates preoperative prognostic stratification, which should be considered in future oral subsite MR T-staging. CLINICAL RELEVANCE STATEMENT: Utilizing axial CE-T1WI, an MR T-staging system for non-pT4 OTSCC was developed by employing rDOI measurement with optimal thresholds of 8 mm and 12 mm, which is comparable with pathological staging and merits consideration in future preoperative oral subsite planning. KEY POINTS: • Tumor morphology, measuring sequences, and observers could impact MR-derived measurements and compromise the consistency with histology. • MR-derived measurements, including radiological depth of invasion (rDOI), tumor thickness, and largest diameter, have a prognostic impact on OS (all p < .001). • rDOI with cutoffs of 8 mm and 12 mm on axial CE-T1WI is an optimal predictor of OS and could facilitate risk stratification in non-pT4 OTSCC disease.

7.
Ecotoxicol Environ Saf ; 271: 115999, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38262096

RESUMO

The hypothesis of paternal origins of health and disease (POHaD) indicates that paternal exposure to adverse environment could alter the epigenetic modification in germ line, increasing the disease susceptibility in offspring or even in subsequent generations. p,p'-Dichlorodiphenyldichloroethylene (p,p'-DDE) is an anti-androgenic chemical and male reproductive toxicant. Gestational p,p'-DDE exposure could impair reproductive development and fertility in male offspring. However, the effect of paternal p,p'-DDE exposure on fertility in male offspring remains uncovered. From postnatal day (PND) 35 to 119, male rats (F0) were given 10 mg/body weight (b.w.) p,p'-DDE or corn oil by gavage. Male rats were then mated with the control females to generate male offspring. On PND35, the male offspring were divided into 4 groups according whether to be given the high-fat diet (HF): corn oil treatment with control diet (C-C), p,p'-DDE treatment with control diet (DDE-C), corn oil treatment with high-fat diet (C-HF) or p,p'-DDE treatment with high-fat diet (DDE-HF) for 35 days. Our results indicated that paternal p,p'-DDE exposure did not affect the male fertility of male offspring directly, but decreased sperm quality and induced testicular apoptosis after the high-fat diet treatment. Further analysis demonstrated that paternal exposure to p,p'-DDE and pre-pubertal high-fat diet decreased sperm Igf2 DMR2 methylation and gene expression in male offspring. Hence, paternal exposure to p,p'-DDE and pre-pubertal high-fat diet increases the susceptibility to male fertility impairment and sperm Igf2 DMR2 hypo-methylation in male offspring, posing a significant implication in the disease etiology.


Assuntos
Diclorodifenil Dicloroetileno , Exposição Paterna , Humanos , Feminino , Masculino , Ratos , Animais , Exposição Paterna/efeitos adversos , Diclorodifenil Dicloroetileno/toxicidade , Dieta Hiperlipídica/efeitos adversos , Óleo de Milho/farmacologia , Sêmen , Espermatozoides , Fertilidade , Metilação
8.
J Environ Manage ; 355: 120553, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38471314

RESUMO

Soil remediation can be achieved through organic and synthetic amendments, but the differences in the phytomanagement of trace metal-contaminated land are unclear. We conducted an outdoor microcosm experiment to simulate the effects of organic amendment citric acid and synthetic amendments EDTA and EGTA on poplar phytomanagement of copper (Cu)- and lead (Pb)-contaminated calcareous land at doses of 0, 1, 3, and 9 mmol kg-1. We found that soil-bioavailable Cu and Pb contents increased by 2.11-27.27 and 1.48-269 times compared to the control, respectively. Additionally, synthetic amendments had a long-lasting (within 25 days) effect on metal bioavailability relative to organic amendments. Consequently, organic amendments increased the root Cu and Pb contents by 2.68-48.61% and 6.60-49.51%, respectively, whereas synthetic amendments increased them by 65.94-260% and 12.50-103%. The Cu and Pb contents in the leaves were lower than those in the roots, and increased significantly by 47.04-179% and 237-601%, respectively, only under synthetic amendments. Interestingly, none of the amendments increased the Cu and Pb content in poplar stems (<5 mg kg-1), which remained within the normal range for terrestrial plants. Regardless of the type and addition level, the amendments did not affect poplar growth. Nevertheless, synthetic amendments caused a significant redistribution of metals (Cu: 22-32%; Pb: 23-53%) from the topsoil into the subsoil within the root zone at medium and high levels relative to organic amendments. Therefore, organic and synthetic amendments can assist poplar phytomanagement with a phytostabilization strategy for Cu- and Pb-contaminated calcareous land and obtain marketable wood biomass. Moreover, collecting leaf litter is crucial when using synthetic amendments at optimum concentration levels.


Assuntos
Metais Pesados , Populus , Poluentes do Solo , Cobre , Chumbo , Biodegradação Ambiental , Poluentes do Solo/análise , Solo , Metais Pesados/análise
9.
Fetal Pediatr Pathol ; 43(2): 111-122, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38213180

RESUMO

Background: We evaluated CD30 and CD56 expression in lymphoblastic lymphoma (LBL) and correlated the results with clinicopathological features and prognosis. Methods: Immunohistochemical (IHC) staining was performed on 85 formalin-fixed paraffin-embedded LBL specimens using two CD30 clones and one CD56 antibody clone. Results: Weak and diffuse expression of CD30 was expressed in 4.7% (clone Ber-H2) or 14.1% (clone EPR4102) in LBL, while CD56 was expressed in 24.7%. CD30 and CD56 expression correlated with lactate dehydrogenase levels. CD56-positive expression was closely associated with an unfavorable prognosis. Although CD30 expression exhibited a trend toward poorer overall survival, it did not reach statistical significance. Conclusion: CD56 is a potential negative prognostic marker. These findings suggest that CD30 and CD56 targeted therapies could be potential therapeutic targets for LBL patients.


Assuntos
Relevância Clínica , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Imuno-Histoquímica , Inclusão em Parafina , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Estudos Retrospectivos , Antígeno Ki-1
10.
Angew Chem Int Ed Engl ; 63(16): e202319983, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38404154

RESUMO

Herein, an interfacial electron redistribution is proposed to boost the activity of carbon-supported spinel NiCo2O4 catalyst toward oxygen conversion via Fe, N-doping strategy. Fe-doping into octahedron induces a redistribution of electrons between Co and Ni atoms on NiCo1.8Fe0.2O4@N-carbon. The increased electron density of Co promotes the coordination of water to Co sites and further dissociation. The generation of proton from water improves the overall activity for the oxygen reduction reaction (ORR). The increased electron density of Ni facilitates the generation of oxygen vacancies. The Ni-VO-Fe structure accelerates the deprotonation of *OOH to improve the activity toward oxygen evolution reaction (OER). N-doping modulates the electron density of carbon to form active sites for the adsorption and protonation of oxygen species. Fir wood-derived carbon endows catalyst with an integral structure to enable outstanding electrocatalytic performance. The NiCo1.8Fe0.2O4@N-carbon express high half-wave potential up to 0.86 V in ORR and low overpotential of 270 mV at 10 mA cm-2 in OER. The zinc-air batteries (ZABs) assembled with the as-prepared catalyst achieve long-term cycle stability (over 2000 cycles) with peak power density (180 mWcm-2). Fe, N-doping strategy drives the catalysis of biomass-derived carbon-based catalysts to the highest level for the oxygen conversion in ZABs.

11.
Small ; : e2307662, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072770

RESUMO

The problem in d-band center modulation of transition metal-based catalysts for the rate-determining steps of oxygen conversion is an obstacle to boost the electrocatalytic activity by accelerating proton coupling. Herein, the Co doping to FeP is adopted to modify the d-band center of Fe. Optimized Fe sites accelerate the proton coupling of oxygen reduction reaction (ORR) on N-doped wood-derived carbon through promoting water dissociation. In situ generated Fe sites optimize the adsorption of oxygen-related intermediates of oxygen evolution reaction (OER) on CoFeP NPs. Superior catalytic activity toward ORR (half-wave potential of 0.88 V) and OER (overpotential of 300 mV at 10 mA cm-2 ) express an unprecedented level in carbon-based transition metal-phosphide catalysts. The liquid zinc-air battery presents an outstanding cycling stability of 800 h (2400 cycles). This research offers a newfangled perception on designing highly efficient carbon-based bifunctional catalysts for ORR and OER.

12.
J Transl Med ; 21(1): 6, 2023 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-36611187

RESUMO

BACKGROUND: Alternative splicing (AS) of RNA is a fundamental biological process that shapes protein diversity. Many non-characteristic AS events are involved in the onset and development of acute myeloid leukemia (AML). Abnormal alterations in splicing factors (SFs), which regulate the onset of AS events, affect the process of splicing regulation. Hence, it is important to explore the relationship between SFs and the clinical features and biological processes of patients with AML. METHODS: This study focused on SFs of the classical heterogeneous nuclear ribonucleoprotein (hnRNP) family and arginine and serine/arginine-rich (SR) splicing factor family. We explored the relationship between the regulation patterns associated with the expression of SFs and clinicopathological factors and biological behaviors of AML based on a multi-omics approach. The biological functions of SRSF10 in AML were further analyzed using clinical samples and in vitro experiments. RESULTS: Most SFs were upregulated in AML samples and were associated with poor prognosis. The four splicing regulation patterns were characterized by differences in immune function, tumor mutation, signaling pathway activity, prognosis, and predicted response to chemotherapy and immunotherapy. A risk score model was constructed and validated as an independent prognostic factor for AML. Overall survival was significantly shorter in the high-risk score group. In addition, we confirmed that SRSF10 expression was significantly up-regulated in clinical samples of AML, and knockdown of SRSF10 inhibited the proliferation of AML cells and promoted apoptosis and G1 phase arrest during the cell cycle. CONCLUSION: The analysis of splicing regulation patterns can help us better understand the differences in the tumor microenvironment of patients with AML and guide clinical decision-making and prognosis prediction. SRSF10 can be a potential therapeutic target and biomarker for AML.


Assuntos
Leucemia Mieloide Aguda , Splicing de RNA , Humanos , Fatores de Processamento de RNA , Processamento Alternativo/genética , Prognóstico , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Arginina/genética , Arginina/metabolismo , Microambiente Tumoral , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Proteínas Repressoras/genética , Proteínas de Ciclo Celular/genética
13.
Cancer Cell Int ; 23(1): 61, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024911

RESUMO

Chronic myeloid leukemia (CML) is a hematological tumor derived from hematopoietic stem cells. The aim of this study is to analyze the biological characteristics and identify the diagnostic markers of CML. We obtained the expression profiles from the Gene Expression Omnibus (GEO) database and identified 210 differentially expressed genes (DEGs) between CML and normal samples. These DEGs are mainly enriched in immune-related pathways such as Th1 and Th2 cell differentiation, primary immunodeficiency, T cell receptor signaling pathway, antigen processing and presentation pathways. Based on these DEGs, we identified two molecular subtypes using a consensus clustering algorithm. Cluster A was an immunosuppressive phenotype with reduced immune cell infiltration and significant activation of metabolism-related pathways such as reactive oxygen species, glycolysis and mTORC1; Cluster B was an immune activating phenotype with increased infiltration of CD4 + and CD8 + T cells and NK cells, and increased activation of signaling pathways such as interferon gamma (IFN-γ) response, IL6-JAK-STAT3 and inflammatory response. Drug prediction results showed that patients in Cluster B had a higher therapeutic response to anti-PD-1 and anti-CTLA4 and were more sensitive to imatinib, nilotinib and dasatinib. Support Vector Machine Recursive Feature Elimination (SVM-RFE), Least Absolute Shrinkage Selection Operator (LASSO) and Random Forest (RF) algorithms identified 4 CML diagnostic genes (HDC, SMPDL3A, IRF4 and AQP3), and the risk score model constructed by these genes improved the diagnostic accuracy. We further validated the diagnostic value of the 4 genes and the risk score model in a clinical cohort, and the risk score can be used in the differential diagnosis of CML and other hematological malignancies. The risk score can also be used to identify molecular subtypes and predict response to imatinib treatment. These results reveal the characteristics of immunosuppression and metabolic reprogramming in CML patients, and the identification of molecular subtypes and biomarkers provides new ideas and insights for the clinical diagnosis and treatment.

14.
Brain Cogn ; 171: 106075, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37625284

RESUMO

Inhibition of return (IOR) has proved to be weakened by audiovisual integration because of the increased perceptual salience of targets. Although other audiovisual interactions, such as crossmodal correspondence, have also been shown to facilitate attentional processes, to the best of our knowledge, no study has investigated the interaction between crossmodal correspondence and IOR. The present study employed Posner's spatial cueing paradigm and manipulated the cue validity, crossmodal correspondence congruency and time interval of auditory and visual stimuli (AV interval) to explore the effect of crossmodal correspondence on the IOR effect. The behavioral results showed a reduced IOR effect under the correspondence congruency condition in contrast to the correspondence incongruency condition at the AV interval of 200 ms, whereas at an AV interval of 80 ms, the decreased IOR effect under crossmodal correspondence congruency was eliminated. The electrophysiological results showed a reduced amplitude difference in P2 between valid and invalid cue conditions when the crossmodal correspondence effect decreased the IOR effect. The present study provided the first evidence of the weakened effect of the crossmodal correspondence effect on the IOR effect, which could be eliminated by audiovisual integration.


Assuntos
Sinais (Psicologia) , Inibição Psicológica , Humanos , Conhecimento
15.
Sensors (Basel) ; 24(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38202863

RESUMO

This paper proposes a supervised deep neural network model for accomplishing highly efficient image quality assessment (IQA) for adaptive optics (AO) images. The AO imaging systems based on ground-based telescopes suffer from residual atmospheric turbulence, tracking error, and photoelectric noise, which can lead to varying degrees of image degradation, making image processing challenging. Currently, assessing the quality and selecting frames of AO images depend on either traditional IQA methods or manual evaluation by experienced researchers, neither of which is entirely reliable. The proposed network is trained by leveraging the similarity between the point spread function (PSF) of the degraded image and the Airy spot as its supervised training instead of relying on the features of the degraded image itself as a quality label. This approach is reflective of the relationship between the degradation factors of the AO imaging process and the image quality and does not require the analysis of the image's specific feature or degradation model. The simulation test data show a Spearman's rank correlation coefficient (SRCC) of 0.97, and our method was also validated using actual acquired AO images. The experimental results indicate that our method is more accurate in evaluating AO image quality compared to traditional IQA methods.

16.
J Environ Sci (China) ; 124: 602-616, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36182166

RESUMO

Herein, a novel direct Z-scheme photocatalyst was accomplished by hybridization of 0D MoS2 quantum dots (MSQDs) and 3D honeycomb-like conjugated triazine polymers (CTP) (namely, CTP-MSQD). The unique 0D/3D hierarchical structure significantly enhanced the exposure of active sites and light harvesting property, while the formed p-n junction enabled the direct strong interface coupling without the necessity of any mediators. The optimized CTP-MSQD3 exhibited continuously increased visible-light-driven photocatalytic activity and strong durability both in Cr(VI) reduction and H2 evolution, featured a rate of 0.069 min-1 and 1070 µmol/(hr∙g), respectively, which were 8 times than those of pure 3D-CTP (0.009 min-1 and 129 µmol/(hr∙g)). We believe that this work provides a promising photocatalyst system that combines a 0D/3D hierarchical structure and a Z-scheme charge flow for efficient and stable photocatalytic conversion.

17.
EMBO J ; 37(17)2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30065069

RESUMO

Generation of single-stranded DNA (ssDNA) is required for the template strand formation during DNA replication. Replication Protein A (RPA) is an ssDNA-binding protein essential for protecting ssDNA at replication forks in eukaryotic cells. While significant progress has been made in characterizing the role of the RPA-ssDNA complex, how RPA is loaded at replication forks remains poorly explored. Here, we show that the Saccharomyces cerevisiae protein regulator of Ty1 transposition 105 (Rtt105) binds RPA and helps load it at replication forks. Cells lacking Rtt105 exhibit a dramatic reduction in RPA loading at replication forks, compromised DNA synthesis under replication stress, and increased genome instability. Mechanistically, we show that Rtt105 mediates the RPA-importin interaction and also promotes RPA binding to ssDNA directly in vitro, but is not present in the final RPA-ssDNA complex. Single-molecule studies reveal that Rtt105 affects the binding mode of RPA to ssDNA These results support a model in which Rtt105 functions as an RPA chaperone that escorts RPA to the nucleus and facilitates its loading onto ssDNA at replication forks.


Assuntos
Genoma Fúngico , Instabilidade Genômica , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Proteína de Replicação A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , DNA Fúngico/genética , DNA Fúngico/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Carioferinas/genética , Carioferinas/metabolismo , Chaperonas Moleculares/genética , Proteína de Replicação A/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
18.
Opt Express ; 30(24): 44039-44054, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36523088

RESUMO

Within the framework of the improved quantitative rescattering (QRS) model, we simulate the correlated two-electron momentum distributions (CMDs) for nonsequential double ionization (NSDI) of Ar by elliptically polarized laser pulses with a wavelength of 788 nm at an intensity of 0.7 × 1014 W/cm2 for the ellipticities ranging from 0 to 0.3. Only the CMDs for recollision excitation with subsequent ionization (RESI) are calculated and the contribution from recollision direct ionization is neglected. According to the QRS model, the CMD for RESI can be factorized as a product of the parallel momentum distribution (PMD) for the first released electron after recollision and the PMD for the second electron ionized from an excited state of the parent ion. The PMD for the first electron is obtained from the laser-free differential cross sections for electron impact excitation of Ar+ calculated using state-of-the-art many-electron R-matrix theory while that for the second electron is evaluated by solving the time-dependent Schrödinger equation. The results show that the CMDs for all the ellipticities considered here exhibit distinct anticorrelated back-to-back emission of the electrons along the major polarization direction, and the anticorrelation is more pronounced with increasing ellipticity. It is found that anticorrelation is attributed to the pattern of the PMD for the second electron ionized from the excited state that, in turn, is caused by the delayed recollision time with respect to the instant of the external field crossing. Our work shows that both the ionization potential of the excited parent ion and the laser intensity play important roles in the process.

19.
Biomacromolecules ; 23(4): 1622-1632, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35104104

RESUMO

Antimicrobial materials are an urgent need for modern wound care in the clinic. Although traditional polyurethane foams have proven to be clinically valuable for wound treatment, their petroleum-originated preparation and bioinert nature have restricted their efficacy in biomedical applications. Here, we propose a simple one-step foaming method to prepare lignin-based polyurethane foams (LPUFs) in which fully biobased polyether polyols partially replace traditional petroleum-based raw materials. The trace amount of phenolic hydroxyl groups (about 4 mmol) in liquefied lignin acts as a direct reducing agent and capping agent to silver ions (less than 0.3 mmol), in situ forming silver nanoparticles (Ag NPs) within the LPUF skeleton. This newly proposed lignin polyurethane/Ag composite foam (named as Ag NP-LPUF) shows improved mechanical, thermal, and antibacterial properties. It is worth mentioning that the Ag NP-LPUF exhibits more than 99% antibacterial rate against Escherichia coli within 1 h and Staphylococcus aureus within 4 h. Evaluations in mice indicate that the antimicrobial composite foams can effectively promote wound healing of full-thickness skin defects. As a proof of concept, this antibacterial and biodegradable foam exhibits significant potential for clinical translation in wound care dressings.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Petróleo , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Escherichia coli , Lignina/farmacologia , Camundongos , Poliuretanos/farmacologia , Prata/farmacologia , Cicatrização
20.
Eur Radiol ; 32(11): 7767-7777, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35639144

RESUMO

OBJECTIVES: Prognoses for nasopharyngeal carcinoma (NPC) between categories T2 and T3 in the Eighth American Joint Committee on Cancer (AJCC) staging system were overlapped. We explored the value of skull base invasion (SBI) subclassification in prognostic stratification and use of induction chemotherapy (IC) to optimize T2/T3 categorization for NPC patients. METHODS: We retrospectively reviewed 1752 NPC patients from two hospitals. Eight skull base bone structures were evaluated. Survival differences were compared between slight SBI (T3 patients with pterygoid process and/or base of the sphenoid bone invasion only) and severe SBI (T3 patients with other SBIs) with or without IC using random matched-pair analysis. We calculated the prognosis and Harrel concordance index (C-index) for the revised T category and compared IC outcomes for the revised tumor stages. RESULTS: Compared to severe SBI, slight SBI showed better 5-year overall survival (OS) (81.5% vs. 92.3%, p = 0.001) and progression-free survival (PFS) (71.5% vs. 83.0%, p = 0.002). Additional IC therapy did not significantly improve OS and PFS in slight SBI. The proposed T category separated OS, PFS, and locoregional recurrence-free survival in T2 and T3 categories with statistical significance. An improved C-index for OS prediction was observed in the proposed T category with combined confounding factors, compared to the AJCC T staging system (0.725 vs. 0.713, p = 0.046). The survival benefits of IC were more obvious in the advanced stage. CONCLUSIONS: NPC patients with slight SBI were recommended to downstage to T2 category. The adjustment for T category enabled better prognostic stratification and guidance for IC use. KEY POINTS: • For nasopharyngeal carcinoma (NPC) patients in T3 category, slight skull base invasion was a significant positive predictor for OS and PFS. • NPC patients with slight SBI might not gain significant survival benefits from induction chemotherapy. • Downstaging slight SBI NPC patients to T2 category would make a more accurate risk stratification, improve the predicting performance in OS, and have a better guidance in the use of IC for patients in advanced stage.


Assuntos
Quimioterapia de Indução , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/patologia , Prognóstico , Neoplasias Nasofaríngeas/patologia , Estudos Retrospectivos , Base do Crânio/patologia , Estadiamento de Neoplasias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA