Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nat Rev Neurosci ; 23(1): 4-22, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34782781

RESUMO

Synaptic activity imposes large energy demands that are met by local adenosine triphosphate (ATP) synthesis through glycolysis and mitochondrial oxidative phosphorylation. ATP drives action potentials, supports synapse assembly and remodelling, and fuels synaptic vesicle filling and recycling, thus sustaining synaptic transmission. Given their polarized morphological features - including long axons and extensive branching in their terminal regions - neurons face exceptional challenges in maintaining presynaptic energy homeostasis, particularly during intensive synaptic activity. Recent studies have started to uncover the mechanisms and signalling pathways involved in activity-dependent and energy-sensitive regulation of presynaptic energetics, or 'synaptoenergetics'. These conceptual advances have established the energetic regulation of synaptic efficacy and plasticity as an exciting research field that is relevant to a range of neurological disorders associated with bioenergetic failure and synaptic dysfunction.


Assuntos
Metabolismo Energético/fisiologia , Receptores Pré-Sinápticos/metabolismo , Transmissão Sináptica/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Glicólise , Humanos , Vesículas Sinápticas
2.
Phytochem Anal ; 35(2): 336-349, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37787024

RESUMO

INTRODUCTION: The root of Bupleurum scorzonerifolium Willd. (BS) is officially recognized in the Chinese Pharmacopoeia. In contrast, the aerial part of BS (ABS), accounting for 80% of BS, is typically discarded, causing potential waste of medicinal resources. ABS has shown benefits in the treatment of inflammation-related diseases in China and Spain, and the material basis underlying its anti-inflammatory effects must be systematically elucidated for the rational use of ABS. OBJECTIVE: We aimed to screen and validate the anti-inflammatory quality markers (Q-markers) of ABS and to confirm the ideal time for ABS harvesting. METHODS: The chemical components and anti-inflammatory effects of ABS from 10 extracted parts were analyzed by UPLC-Q-TOF-MS/MS and in a lipopolysaccharide (LPS)-induced cell model. Anti-inflammatory substances were screened by Pearson bivariate analysis and gray correlation analysis, and the anti-inflammatory effects were verified in a zebrafish tail-cutting inflammation model. HPLC was applied to measure the Q-marker contents of ABS in different harvesting periods. RESULTS: Ten ABS extracts effectively alleviated the increase in LPS-induced proinflammatory cytokines in RAW 264.7 cells. Forty components were identified from them, among which 27 were common components. Eight components were correlated with anti-inflammatory effects, which were confirmed to reverse the expression of proinflammatory and anti-inflammatory factors in a zebrafish model. Chlorogenic acid, hypericin, rutin, quercetin, and isorhamnetin can be detected by HPLC, and the maximum contents of these five Q-markers were obtained in the sample harvested in August. CONCLUSION: The anti-inflammatory Q-markers of ABS were elucidated by chromatographic-pharmacodynamic-stoichiometric analysis, which served as a crucial basis for ABS quality control.


Assuntos
Bupleurum , Espectrometria de Massas em Tandem , Camundongos , Animais , Peixe-Zebra , Cromatografia Líquida de Alta Pressão , Bupleurum/química , Células RAW 264.7 , Lipopolissacarídeos/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/análise , Inflamação/tratamento farmacológico , Componentes Aéreos da Planta/química
3.
Entropy (Basel) ; 25(10)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37895561

RESUMO

Multimodal emotion recognition (MER) refers to the identification and understanding of human emotional states by combining different signals, including-but not limited to-text, speech, and face cues. MER plays a crucial role in the human-computer interaction (HCI) domain. With the recent progression of deep learning technologies and the increasing availability of multimodal datasets, the MER domain has witnessed considerable development, resulting in numerous significant research breakthroughs. However, a conspicuous absence of thorough and focused reviews on these deep learning-based MER achievements is observed. This survey aims to bridge this gap by providing a comprehensive overview of the recent advancements in MER based on deep learning. For an orderly exposition, this paper first outlines a meticulous analysis of the current multimodal datasets, emphasizing their advantages and constraints. Subsequently, we thoroughly scrutinize diverse methods for multimodal emotional feature extraction, highlighting the merits and demerits of each method. Moreover, we perform an exhaustive analysis of various MER algorithms, with particular focus on the model-agnostic fusion methods (including early fusion, late fusion, and hybrid fusion) and fusion based on intermediate layers of deep models (encompassing simple concatenation fusion, utterance-level interaction fusion, and fine-grained interaction fusion). We assess the strengths and weaknesses of these fusion strategies, providing guidance to researchers to help them select the most suitable techniques for their studies. In summary, this survey aims to provide a thorough and insightful review of the field of deep learning-based MER. It is intended as a valuable guide to aid researchers in furthering the evolution of this dynamic and impactful field.

4.
Mol Psychiatry ; 26(5): 1472-1490, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32332993

RESUMO

The formation and maintenance of synapses require long-distance delivery of newly synthesized synaptic proteins from the soma to distal synapses, raising the fundamental question of whether impaired transport is associated with neurodevelopmental disorders such as autism. We previously revealed that syntabulin acts as a motor adapter linking kinesin-1 motor and presynaptic cargos. Here, we report that defects in syntabulin-mediated transport and thus reduced formation and maturation of synapses are one of core synaptic mechanisms underlying autism-like synaptic dysfunction and social behavioral abnormalities. Syntabulin expression in the mouse brain peaks during the first 2 weeks of postnatal development and progressively declines during brain maturation. Neurons from conditional syntabulin-/- mice (stb cKO) display impaired transport of presynaptic cargos, reduced synapse density and active zones, and altered synaptic transmission and long-term plasticity. Intriguingly, stb cKO mice exhibit core autism-like traits, including defective social recognition and communication, increased stereotypic behavior, and impaired spatial learning and memory. These phenotypes establish a new mechanistic link between reduced transport of synaptic cargos and impaired maintenance of synaptic transmission and plasticity, contributing to autism-associated behavioral abnormalities. This notion is further confirmed by the human missense variant STB-R178Q, which is found in an autism patient and loses its adapter capacity for binding kinesin-1 motors. Expressing STB-R178Q fails to rescue reduced synapse formation and impaired synaptic transmission and plasticity in stb cKO neurons. Altogether, our study suggests that defects in syntabulin-mediated transport mechanisms underlie the synaptic dysfunction and behavioral abnormalities that bear similarities to autism.


Assuntos
Transtorno Autístico , Animais , Transtorno Autístico/genética , Células Cultivadas , Humanos , Camundongos , Neurônios , Sinapses , Transmissão Sináptica
5.
Plant Biotechnol J ; 19(3): 517-531, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32946650

RESUMO

The Chinese jujube (Ziziphus jujuba Mill.), a member of the Rhamnaceae family, is an important perennial fruit tree crop of substantial economic, ecological and nutritional value, and is also used as a traditional herbal medicine. Here, we report the resequencing of 493 jujube accessions, including 202 wild and 291 cultivated accessions at >16× depth. Our population genomic analyses revealed that the Shanxi-Shaanxi area of China was jujube's primary domestication centre and that jujube was then disseminated into East China before finally extending into South China. Divergence events analysis indicated that Ziziphus acidojujuba and Ziziphus jujuba diverged around 2.7 Mya, suggesting the interesting possibility that a long pre-domestication period may have occurred prior to human intervention. Using the large genetic polymorphism data set, we identified a 15-bp tandem insertion in the promoter of the jujube ortholog of the POLLEN DEFECTIVE IN GUIDANCE 1 (POD1) gene, which was strongly associated with seed-setting rate. Integrating genome-wide association study (GWAS), transcriptome data, expression analysis and transgenic validation in tomato, we identified a DA3/UBIQUITIN-SPECIFIC PROTEASE 14 (UBP14) ortholog, which negatively regulate fruit weight in jujube. We also identified candidate genes, which have likely influenced the selection of fruit sweetness and crispness texture traits among fresh and dry jujubes. Our study not only illuminates the genetic basis of jujube evolution and domestication and provides a deep and rich genomic resource to facilitate both crop improvement and hypothesis-driven basic research, but also identifies multiple agriculturally important genes for this unique perennial tree fruit species.


Assuntos
Ziziphus , China , Frutas/genética , Estudo de Associação Genômica Ampla , Genômica , Ziziphus/genética
6.
J Biol Chem ; 294(17): 7013-7024, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30862674

RESUMO

Serine incorporator 5 (SERINC5) is a recently identified restriction factor that blocks virus entry but is antagonized by three unrelated retroviral accessory proteins. The S2 protein from equine infectious anemia virus (EIAV) has been reported to reduce SERINC5 expression at steady-state levels likely via the endocytic pathway; however, the precise mechanism is still unclear. Here, we investigated how EIAV S2 protein down-regulates SERINC5 compared with down-regulation induced by Nef from HIV-1 and glycoMA proteins from murine leukemia virus (MLV). Using bimolecular fluorescence complementation (BiFC) assay and immunoprecipitation (IP), we detected an interaction between S2 and SERINC5. We found that this interaction relies on the S2 myristoylation site, indicating that it may occur on the plasma membrane. S2 internalized SERINC5 via receptor-mediated endocytosis and targeted it to endosomes and lysosomes, resulting in a ubiquitination-dependent decrease in SERINC5 expression at steady-state levels. Both BiFC and IP detected a glycoMA-SERINC5 interaction, but a Nef-SERINC5 interaction was detected only by BiFC. Moreover, S2 and glycoMA down-regulated SERINC5 more effectively than did Nef. We further show that unlike Nef, both S2 and glycoMA effectively down-regulate SERINC2 and also SERINC5 from Xenopus tropicalis (xSERINC5). Moreover, we detected expression of the equine SERINC5 (eSERINC5) protein and observed that its expression is much weaker than expression levels of SERINC5 from other species. Nonetheless, eSERINC5 had a strong antiviral activity that was effectively counteracted by S2. We conclude that HIV-1, EIAV, and MLV share a similar mechanism to antagonize viral restriction by host SERINC5.


Assuntos
Proteínas de Membrana/antagonistas & inibidores , Proteínas Virais/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Animais , Regulação para Baixo , Endocitose , Células HEK293 , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Organelas/metabolismo , Ligação Proteica
7.
J Virol ; 93(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30355687

RESUMO

Glycosylated Gag (glycoGag) is an accessory protein expressed by most gammaretroviruses, including murine leukemia virus (MLV). MLV glycoGag not only enhances MLV replication and disease progression but also increases human immunodeficiency virus type 1 (HIV-1) infectivity as Nef does. Recently, SERINC5 (Ser5) was identified as the target for Nef, and the glycoGag Nef-like activity has been attributed to the Ser5 antagonism. Here, we investigated how glycoGag antagonizes Ser5 using MLV glycoMA and murine Ser5 proteins. We confirm previous observations that glycoMA relocalizes Ser5 from plasma membrane to perinuclear punctated compartments and the important role of its Y36XXL39 motif in this process. We find that glycoMA decreases Ser5 expression at steady-state levels and identify two other glycoGag crucial residues, P31 and R63, for the Ser5 downregulation. The glycoMA and Ser5 interaction is detected in live cells using a bimolecular fluorescence complementation assay. Ser5 is internalized via receptor-mediated endocytosis and relocalized to Rab5+ early, Rab7+ late, and Rab11+ recycling endosomes by glycoMA. Although glycoMA is not polyubiquitinated, the Ser5 downregulation requires Ser5 polyubiquitination via the K48- and K63-linkage, resulting in Ser5 destruction in lysosomes. Although P31, Y36, L39, and R63 are not required for glycoMA interaction with Ser5, they are required for Ser5 relocalization to lysosomes for destruction. In addition, although murine Ser1, Ser2, and Ser3 exhibit very poor antiviral activity, they are also targeted by glycoMA for lysosomal destruction. We conclude that glycoGag has a broad activity to downregulate SERINC proteins via the cellular endosome/lysosome pathway, which promotes viral replication.IMPORTANCE MLV glycoGag not only enhances MLV replication but also increases HIV-1 infectivity similarly as Nef. Recent studies have discovered that both glycoGag and Nef antagonize a novel host restriction factor Ser5 and promote viral replication. Compared to Nef, the glycoGag antagonism of Ser5 is still poorly understood. MLV glycoGag is a transmembrane version of the structural Gag protein with an extra 88-amino-acid leader region that determines its activity. We now show that glycoGag interacts with Ser5 in live cells and internalizes Ser5 via receptor-mediated endocytosis. Ser5 is polyubiquitinated and relocalized to endosomes and lysosomes for massive destruction. In addition to the previously identified tyrosine-based sorting signal, we find two more important residues for Ser5 relocalization and downregulation. We also find that the Ser5 sensitivity to glycoGag is conserved in the SERINC family. Together, our findings highlight the important role of endosome/lysosome pathway in the enhancement of viral replication by viral proteins.


Assuntos
Membrana Celular/metabolismo , Citoplasma/metabolismo , Produtos do Gene gag/metabolismo , Vírus da Leucemia Murina/metabolismo , Proteínas de Membrana/metabolismo , Complexo 2 de Proteínas Adaptadoras/metabolismo , Animais , Regulação para Baixo , Endocitose , Glicosilação , Proteínas de Membrana/química , Camundongos , Transdução de Sinais , Ubiquitinação
8.
J Virol ; 92(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29514909

RESUMO

The primate lentiviral accessory protein Nef downregulates CD4 and major histocompatibility complex class I (MHC-I) from the cell surface via independent endosomal trafficking pathways to promote viral pathogenesis. In addition, Nef antagonizes a novel restriction factor, SERINC5 (Ser5), to increase viral infectivity. To explore the molecular mechanism of Ser5 antagonism by Nef, we determined how Nef affects Ser5 expression and intracellular trafficking in comparison to CD4 and MHC-I. We confirm that Nef excludes Ser5 from human immunodeficiency virus type 1 (HIV-1) virions by downregulating its cell surface expression via similar functional motifs required for CD4 downregulation. We find that Nef decreases both Ser5 and CD4 expression at steady-state levels, which are rescued by NH4Cl or bafilomycin A1 treatment. Nef binding to Ser5 was detected in living cells using a bimolecular fluorescence complementation assay, where Nef membrane association is required for interaction. In addition, Nef triggers rapid Ser5 internalization via receptor-mediated endocytosis and relocalizes Ser5 to Rab5+ early, Rab7+ late, and Rab11+ recycling endosomes. Manipulation of AP-2, Rab5, Rab7, and Rab11 expression levels affects the Nef-dependent Ser5 and CD4 downregulation. Moreover, although Nef does not promote Ser5 polyubiquitination, Ser5 downregulation relies on the ubiquitination pathway, and both K48- and K63-specific ubiquitin linkages are required for the downregulation. Finally, Nef promotes Ser5 colocalization with LAMP1, which is enhanced by bafilomycin A1 treatment, suggesting that Ser5 is targeted to lysosomes for destruction. We conclude that Nef uses a similar mechanism to downregulate Ser5 and CD4, which sorts Ser5 into a point-of-no-return degradative pathway to counteract its restriction.IMPORTANCE Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) express an accessory protein called Nef to promote viral pathogenesis. Nef drives immune escape in vivo through downregulation of CD4 and MHC-I from the host cell surface. Recently, Nef was reported to counteract a novel host restriction factor, Ser5, to increase viral infectivity. Nef downregulates cell surface Ser5, thus preventing its incorporation into virus particles, resulting in disruption of its antiviral activity. Here, we report mechanistic studies of Nef-mediated Ser5 downregulation in comparison to CD4 and MHC-I. We demonstrate that Nef binds directly to Ser5 in living cells and that Nef-Ser5 interaction requires Nef association with the plasma membrane. Subsequently, Nef internalizes Ser5 from the plasma membrane via receptor-mediated endocytosis, and targets ubiquitinated Ser5 to endosomes and lysosomes for destruction. Collectively, these results provide new insights into our ongoing understanding of the Nef-Ser5 arms race in HIV-1 infection.


Assuntos
Antígenos CD4/biossíntese , Endocitose/imunologia , HIV-1/patogenicidade , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Complexo 2 de Proteínas Adaptadoras/biossíntese , Linhagem Celular Tumoral , Regulação para Baixo , Inibidores Enzimáticos/farmacologia , Células HEK293 , Antígenos HLA-A/biossíntese , Células HeLa , Humanos , Células Jurkat , Proteínas de Membrana Lisossomal/metabolismo , Macrolídeos/farmacologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Transporte Proteico/fisiologia , Ubiquitinação/fisiologia , Proteínas rab de Ligação ao GTP/biossíntese , Proteínas rab5 de Ligação ao GTP/biossíntese , proteínas de unión al GTP Rab7
9.
J Virol ; 91(10)2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28275190

RESUMO

Among the five serine incorporator (SERINC) family members, SERINC5 (Ser5) was reported to strongly inhibit HIV-1 replication, which is counteracted by Nef. Ser5 produces 5 alternatively spliced isoforms: Ser5-001 has 10 putative transmembrane domains, whereas Ser5-004, -005, -008a, and -008b do not have the last one. Here, we confirmed the strong Ser5 anti-HIV-1 activity and investigated its isoforms' expression and antiviral activities. It was found that Ser5-001 transcripts were detected at least 10-fold more than the other isoforms by real-time quantitative PCR. When Ser5-001 and its two isoforms Ser5-005 and Ser5-008a were expressed from the same mammalian expression vector, only Ser5-001 was stably expressed, whereas the others were poorly expressed due to rapid degradation. In addition, unlike the other isoforms, which are located mainly in the cytoplasm, Ser5-001 is localized primarily to the plasma membrane. To map the critical determinant, Ser5 mutants bearing C-terminal deletions were created. It was found that the 10th transmembrane domain is required for Ser5 stable expression and plasma membrane localization. As expected, only Ser5-001 strongly inhibits HIV-1 infectivity, whereas the other Ser5 isoforms and mutants that do not have the 10th transmembrane domain show very poor activity. It was also observed that the Nef counteractive activity could be easily saturated by Ser5 overexpression. Thus, we conclude that Ser5-001 is the predominant antiviral isoform that restricts HIV-1, and the 10th transmembrane domain plays a critical role in this process by regulating its protein stability and plasma membrane targeting.IMPORTANCE Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) express a small protein, Nef, to enhance viral pathogenesis in vivo Nef has an important in vitro function, which is to make virus particles more infectious, but the mechanism has been unclear. Recently, Nef was reported to counteract a novel anti-HIV host protein, SERINC5 (Ser5). Ser5 has five alternatively spliced isoforms, Ser5-001, -004, -005, -008a, and -008b, and only Ser5-001 has an extra C-terminal transmembrane domain. We now show that the Ser5-001 transcripts are produced at least 10-fold more than the others, and only Ser5-001 produces stable proteins that are targeted to the plasma membrane. Importantly, only Ser5-001 shows strong anti-HIV-1 activity. We further demonstrate that the extra transmembrane domain is required for Ser5 stable expression and plasma membrane localization. These results suggest that plasma membrane localization is required for Ser5 antiviral activity, and Ser5-001 is the predominant isoform that contributes to the activity.


Assuntos
HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Animais , HIV-1/genética , Humanos , Glicoproteínas de Membrana , Proteínas de Membrana/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Isoformas de Proteínas , Splicing de RNA , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo
10.
Int J Mol Sci ; 17(2): 190, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26861286

RESUMO

The pathogenesis of Parkinson's disease (PD) often involves the over-activation of microglia. Over-activated microglia could produce several inflammatory mediators, which trigger excessive inflammation and ultimately cause dopaminergic neuron damage. Anti-inflammatory effects of glucagon-like peptide-2 (GLP-2) in the periphery have been shown. Nonetheless, it has not been illustrated in the brain. Thus, in this study, we aimed to understand the role of GLP-2 in microglia activation and to elucidate the underlying mechanisms. BV-2 cells were pretreated with GLP-2 and then stimulated by lipopolysaccharide (LPS). Cells were assessed for the responses of pro-inflammatory enzymes (iNOS and COX-2) and pro-inflammatory cytokines (IL-1ß, IL-6 and TNF-α); the related signaling pathways were evaluated by Western blotting. The rescue effect of GLP-2 on microglia-mediated neurotoxicity was also examined. The results showed that GLP-2 significantly reduced LPS-induced production of inducible nitric oxide synthase (iNOS), cyclooxygenase-s (COX-2), IL-1ß, IL-6 and TNF-α. Blocking of Gαs by NF449 resulted in a loss of this anti-inflammatory effect in BV-2 cells. Analyses in signaling pathways demonstrated that GLP-2 reduced LPS-induced phosphorylation of ERK1/2, JNK1/2 and p65, while no effect was observed on p38 phosphorylation. In addition, GLP-2 could suppress microglia-mediated neurotoxicity. All results imply that GLP-2 inhibits LPS-induced microglia activation by collectively regulating ERK1/2, JNK1/2 and p65.


Assuntos
Peptídeo 2 Semelhante ao Glucagon/metabolismo , Inflamação/metabolismo , Transdução de Sinais , Animais , Linhagem Celular Transformada , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Citocinas/genética , Citocinas/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Expressão Gênica , Peptídeo 2 Semelhante ao Glucagon/farmacologia , Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/imunologia , Sistema de Sinalização das MAP Quinases , Microglia/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
J Neuroinflammation ; 12: 9, 2015 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-25595674

RESUMO

BACKGROUND: Accumulating evidence suggests that neuroinflammation plays an important role in the progression of Parkinson's disease (PD). Excessively activated microglia produce several pro-inflammatory enzymes and pro-inflammatory cytokines, leading to damage to surrounding neurons and eventually inducing neurodegeneration. Therefore, the inhibition of microglial overactivation may be a potential therapeutic strategy to prevent the further progression of PD. ß-Hydroxybutyric acid (BHBA) has been shown to suppress lipopolysaccharide (LPS)-induced inflammation in BV-2 cells and to protect dopaminergic neurons in previous studies, but the underlying mechanisms remain unclear. Thus, in this study, we further investigated this mechanism in LPS-induced in vivo and in vitro PD models. METHODS: For the in vitro experiments, primary mesencephalic neuron-glia cultures were pretreated with BHBA and stimulated with LPS. [(3)H]dopamine (DA) uptake, tyrosine hydroxylase-immunoreactive (TH-ir) neurons and morphological analysis were evaluated and analyzed in primary mesencephalic neuron-glia cultures. In vivo, microglial activation and the injury of dopaminergic neurons were induced by LPS intranigral injection, and the effects of BHBA treatment on microglial activation and the survival ratio and function of dopaminergic neurons were investigated. Four our in vitro mechanistic experiment, primary microglial cells were pretreated with BHBA and stimulated with LPS; the cells were then assessed for the responses of pro-inflammatory enzymes and pro-inflammatory cytokines, and the NF-κB signaling pathway was evaluated and analyzed. RESULTS: We found that BHBA concentration-dependently attenuated the LPS-induced decrease in [(3)H]DA uptake and loss of TH-ir neurons in the primary mesencephalic neuron/glia mixed culture. BHBA treatment significantly improved the motor dysfunction of the PD model rats induced by intranigral injection of LPS, and this beneficial effect of BHBA was attributed to the inhibition of microglial overactivation and the protection of dopaminergic neurons in the substantia nigra (SN). Our in vitro mechanistic study revealed that the inhibitory effect of BHBA on microglia was mediated by G-protein-coupled receptor 109A (GPR109A) and involved the NF-κB signaling pathway, causing the inhibition of pro-inflammatory enzyme (iNOS and COX-2) and pro-inflammatory cytokine (TNF-α, IL-1ß, and IL-6) production. CONCLUSIONS: In conclusion, the present study supports the effectiveness of BHBA in protecting dopaminergic neurons against inflammatory challenge.


Assuntos
Ácido 3-Hidroxibutírico/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/etiologia , Doença de Parkinson/complicações , Receptores Acoplados a Proteínas G/metabolismo , Receptores Nicotínicos/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Embrião de Mamíferos , Regulação da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Masculino , Mesencéfalo/citologia , Proteínas dos Microfilamentos/metabolismo , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Doença de Parkinson/etiologia , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G/genética , Receptores Nicotínicos/genética , Transdução de Sinais/efeitos dos fármacos , Comportamento Estereotipado/efeitos dos fármacos
12.
Int J Mol Sci ; 16(11): 26654-66, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26561804

RESUMO

Mycophenolate mofetil (MMF) is an alternative immunosuppressive agent that has been reported to be effective and well tolerated for the treatment of refractory inflammatory bowel disease (IBD). The aim of this study was to investigate the therapeutic effect of MMF on intestinal injury and tissue inflammation, which were caused by Crohn's disease (CD). Here, trinitrobenzene sulfonic acid-relapsing (TNBS) colitis was induced in mice; then, we measured the differentiation of Th1/Th2 cells in mouse splenocytes by flow cytometry and the secretion of cytokines in mice with TNBS-induced colitis by real-time polymerase chain reaction and/or enzyme-linked immunosorbent assay (RT-PCR/ELISA). The results show that MMF significantly inhibited mRNA expression of pro-inflammatory cytokines IFN-γ, TNF-α, IL-12, IL-6, and IL-1ß in mice with TNBS-induced colitis; however, MMF did not inhibit the expression of IL-10 mRNA. Additionally, ELISA showed that the serum levels of IFN-γ, TNF-α, IL-12, IL-6, and IL-1ß were down-regulated in a TNBS model of colitis. Flow cytometric analysis showed MMF markedly reduced the percentages of Th1 and Th2 splenocytes in the CD mouse model. Mycophenolic acid (MPA) also significantly decreased the percentages of splenic Th1 and Th2 cells in vitro. Furthermore, MMF treatment not only significantly ameliorated diarrhea, and loss of body weight but also abrogated the histopathologic severity and inflammatory response of inflammatory colitis, and increased the survival rate of TNBS-induced colitic mice. These results suggest that treatment with MMF may improve experimental colitis and induce inflammatory response remission of CD by down-regulation of pro-inflammatory cytokines via modulation of the differentiation of Th1/Th2 cells.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Diferenciação Celular/efeitos dos fármacos , Colite/tratamento farmacológico , Doença de Crohn/tratamento farmacológico , Imunossupressores/farmacologia , Ácido Micofenólico/análogos & derivados , Animais , Diferenciação Celular/imunologia , Colite/induzido quimicamente , Colite/imunologia , Colite/patologia , Doença de Crohn/induzido quimicamente , Doença de Crohn/imunologia , Doença de Crohn/patologia , Modelos Animais de Doenças , Feminino , Expressão Gênica , Interferon gama/genética , Interferon gama/imunologia , Interleucina-12/genética , Interleucina-12/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Ácido Micofenólico/farmacologia , Baço/efeitos dos fármacos , Baço/imunologia , Baço/patologia , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th1/patologia , Equilíbrio Th1-Th2/efeitos dos fármacos , Células Th2/efeitos dos fármacos , Células Th2/imunologia , Células Th2/patologia , Ácido Trinitrobenzenossulfônico , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
13.
Semin Cell Dev Biol ; 23(5): 499-508, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22516642

RESUMO

Insights into the role of ubiquitin-dependent signaling in the regulation of apoptosis have provided one of the most significant breakthroughs in recent years for cell death research. It has been revealed that all steps in the apoptotic cascade, including transcriptional regulation of apoptotic gene expression, outer mitochondrial membrane permeabilization and caspase activation, are under the control of the ubiquitin/proteasome system. This makes ubiquitin signaling one on the most critical life and death decision checkpoints in mammalian cells. Here we discuss the ubiquitylation-dependent regulation of the mitochondrial steps in apoptosis, with a focus on the role of regulated protein degradation in this process. The newly identified ubiquitylation-dependent processes in the Bcl-2 family-regulated outer mitochondrial membrane permeabilization, as well as the role of mitochondria-associated ubiquitin ligases and other molecular components of the ubiquitin/proteasome system in the control of mitochondrial steps in apoptosis, are discussed.


Assuntos
Apoptose , Mitocôndrias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Animais , Humanos , Ubiquitina-Proteína Ligases/metabolismo
14.
Mediators Inflamm ; 2014: 983401, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24803746

RESUMO

ß-Hydroxybutyric acid (BHBA) has neuroprotective effects, but the underlying molecular mechanisms are unclear. Microglial activation plays an important role in neurodegenerative diseases by producing several proinflammatory enzymes and proinflammatory cytokines. The current study investigates the potential mechanisms whereby BHBA affects the expression of potentially proinflammatory proteins by cultured murine microglial BV-2 cells stimulated with lipopolysaccharide (LPS). The results showed that BHBA significantly reduced LPS-induced protein and mRNA expression levels of iNOS, COX-2, TNF-α, IL-1ß, and IL-6. Blocking of GPR109A by PTX resulted in a loss of this anti-inflammatory effect in BV-2 cells. Western blot analysis showed that BHBA reduced LPS-induced degradation of IκB-α and translocation of NF-κB, while no effect was observed on MAPKs phosphorylation. All results imply that BHBA significantly reduces levels of proinflammatory enzymes and proinflammatory cytokines by inhibition of the NF-κB signaling pathway but not MAPKs pathways, and GPR109A is essential to this function. Overall, these data suggest that BHBA has a potential as neuroprotective drug candidate in neurodegenerative diseases.


Assuntos
Ácido 3-Hidroxibutírico/farmacologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Animais , Linhagem Celular , Proteínas I-kappa B/metabolismo , Camundongos , Inibidor de NF-kappaB alfa , NF-kappa B , Transdução de Sinais/efeitos dos fármacos
15.
Adv Sci (Weinh) ; 11(35): e2403732, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39031635

RESUMO

Furin primarily localizes to the trans-Golgi network (TGN), where it cleaves and activates a broad range of immature proproteins that play critical roles in cellular homeostasis, disease progression, and infection. Furin is retrieved from endosomes to the TGN after being phosphorylated, but it is still unclear how furin exits the TGN to initiate the post-Golgi trafficking and how its activity is regulated in the TGN. Here three membrane-associated RING-CH finger (MARCHF) proteins (2, 8, 9) are identified as furin E3 ubiquitin ligases, which catalyze furin K33-polyubiquitination. Polyubiquitination prevents furin from maturation by blocking its ectodomain cleavage inside cells but promotes its egress from the TGN and shedding. Further ubiquitin-specific protease 32 (USP32) is identified as the furin deubiquitinase in the TGN that counteracts the MARCHF inhibitory activity on furin. Thus, the furin post-Golgi trafficking is regulated by an interplay between polyubiquitination and phosphorylation. Polyubiquitination is required for furin anterograde transport but inhibits its proprotein convertase activity, and phosphorylation is required for furin retrograde transport to produce fully active furin inside cells.


Assuntos
Furina , Ubiquitinação , Rede trans-Golgi , Humanos , Furina/metabolismo , Furina/genética , Fosforilação , Transporte Proteico/fisiologia , Rede trans-Golgi/metabolismo , Rede trans-Golgi/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética
16.
Nat Commun ; 15(1): 162, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167417

RESUMO

SARS-CoV-2 and filovirus enter cells via the cell surface angiotensin-converting enzyme 2 (ACE2) or the late-endosome Niemann-Pick C1 (NPC1) as a receptor. Here, we screened 974 natural compounds and identified Tubeimosides I, II, and III as pan-coronavirus and filovirus entry inhibitors that target NPC1. Using in-silico, biochemical, and genomic approaches, we provide evidence that NPC1 also binds SARS-CoV-2 spike (S) protein on the receptor-binding domain (RBD), which is blocked by Tubeimosides. Importantly, NPC1 strongly promotes productive SARS-CoV-2 entry, which we propose is due to its influence on fusion in late endosomes. The Tubeimosides' antiviral activity and NPC1 function are further confirmed by infection with SARS-CoV-2 variants of concern (VOC), SARS-CoV, and MERS-CoV. Thus, NPC1 is a critical entry co-factor for highly pathogenic human coronaviruses (HCoVs) in the late endosomes, and Tubeimosides hold promise as a new countermeasure for these HCoVs and filoviruses.


Assuntos
Ebolavirus , Receptores Virais , Humanos , Ligação Proteica , Receptores Virais/metabolismo , Proteína C1 de Niemann-Pick/metabolismo , Ebolavirus/fisiologia , Internalização do Vírus , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
17.
Mediators Inflamm ; 2013: 548073, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24574581

RESUMO

The aim of this study was to investigate the anti-inflammatory effect of IL-21 on LPS-induced mouse peritoneal macrophages. The results showed that IL-21 significantly inhibited LPS-induced mRNA expression of IL-1ß, TNF-α, and IL-6 in macrophages, but not of IFN-γ, IL-10, CCL5, or CXCL2. ELISA analysis showed that IL-21 also suppressed LPS-induced production of TNF-α and IL-6 in culture supernatants. Western blot analysis showed that IL-21 clearly inhibited ERK and IκBα phosphorylation and NF-κB translocation in LPS-stimulated macrophages, but it increased STAT3 phosphorylation. Flow cytometric and Western blot analysis showed that IL-21 decreased M1 macrophages surface markers expression of CD86, iNOS, and TLR4 in LPS-stimulated cells. All results suggested that IL-21 decreases IL-6 and TNF-α production via inhibiting the phosphorylation of ERK and translocation of NF-κB and promotes a shift from the M1 to M2 macrophage phenotype by decreasing the expression of CD86, iNOS, and TLR4 and by increasing STAT3 phosphorylation in LPS-stimulated cells.


Assuntos
Citocinas/metabolismo , Interleucinas/farmacologia , Macrófagos Peritoneais/citologia , Transdução de Sinais , Animais , Antígeno B7-2/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Citometria de Fluxo , Inflamação , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes/metabolismo , Fator de Transcrição STAT3/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
18.
Int J Mol Sci ; 14(11): 21474-88, 2013 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-24177567

RESUMO

Short-chain fatty acids (SCFAs) play a key role in altering carbohydrate and lipid metabolism, influence endocrine pancreas activity, and as a precursor of ruminant milk fat. However, the effect and detailed mechanisms by which SCFAs mediate bovine growth hormone (GH) and prolactin (PRL) gene transcription remain unclear. In this study, we detected the effects of SCFAs (acetate, propionate, and butyrate) on the activity of the cAMP/PKA/CREB signaling pathway, GH, PRL, and Pit-1 gene transcription in dairy cow anterior pituitary cells (DCAPCs). The results showed that SCFAs decreased intracellular cAMP levels and a subsequent reduction in PKA activity. Inhibition of PKA activity decreased CREB phosphorylation, thereby inhibiting GH and PRL gene transcription. Furthermore, PTX blocked SCFAs- inhibited cAMP/PKA/CREB signaling pathway. These data showed that the inhibition of GH and PRL gene transcription induced by SCFAs is mediated by Gi activation and that propionate is more potent than acetate and butyrate in inhibiting GH and PRL gene transcription. In conclusion, this study identifies a biochemical mechanism for the regulation of SCFAs on bovine GH and PRL gene transcription in DCAPCs, which may serve as one of the factors that regulate pituitary function in accordance with dietary intake.


Assuntos
Ácidos Graxos Voláteis/metabolismo , Hormônio do Crescimento/metabolismo , Adeno-Hipófise/metabolismo , Prolactina/metabolismo , Transcrição Gênica/efeitos dos fármacos , Animais , Bovinos , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ácidos Graxos Voláteis/administração & dosagem , Hormônio do Crescimento/antagonistas & inibidores , Adeno-Hipófise/citologia , Prolactina/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
19.
Curr Opin Neurobiol ; 80: 102722, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37028201

RESUMO

The unique morphology and functionality of central nervous system (CNS) neurons necessitate specialized mechanisms to maintain energy metabolism throughout long axons and extensive terminals. Oligodendrocytes (OLs) enwrap CNS axons with myelin sheaths in a multilamellar fashion. Apart from their well-established function in action potential propagation, OLs also provide intercellular metabolic support to axons by transferring energy metabolites and delivering exosomes consisting of proteins, lipids, and RNAs. OL-derived metabolic support is crucial for the maintenance of axonal integrity; its dysfunction has emerged as an important player in neurological disorders that are associated with axonal energy deficits and degeneration. In this review, we discuss recent advances in how these transcellular signaling pathways maintain axonal energy metabolism in health and neurological disorders.


Assuntos
Axônios , Oligodendroglia , Axônios/fisiologia , Bainha de Mielina/metabolismo , Sistema Nervoso Central/fisiologia , Metabolismo Energético/fisiologia
20.
Nat Commun ; 13(1): 2242, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35474067

RESUMO

HIV-1 must counteract various host restrictions to establish productive infection. SERINC5 is a potent restriction factor that blocks HIV-1 entry from virions, but its activity is counteracted by Nef. The SERINC5 and Nef activities are both initiated from the plasma membrane, where SERINC5 is packaged into virions for viral inhibition or downregulated by Nef via lysosomal degradation. However, it is still unclear how SERINC5 is localized to and how its expression is regulated on the plasma membrane. We now report that Cullin 3-KLHL20, a trans-Golgi network (TGN)-localized E3 ubiquitin ligase, polyubiquitinates SERINC5 at lysine 130 via K33/K48-linked ubiquitination. The K33-linked polyubiquitination determines SERINC5 expression on the plasma membrane, and the K48-linked polyubiquitination contributes to SERINC5 downregulation from the cell surface. Our study reveals an important role of K130 polyubiquitination and K33/K48-linked ubiquitin chains in HIV-1 infection by regulating SERINC5 post-Golgi trafficking and degradation.


Assuntos
HIV-1 , HIV-1/fisiologia , Proteínas de Membrana/metabolismo , Ubiquitina-Proteína Ligases/genética , Vírion/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA