Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 161(6)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39136659

RESUMO

Vibrational polaritons form in a planar Fabry-Pérot microcavity when a vibrational mode of a layer of molecules is near resonant with an infrared cavity mode. Here, dispersion relations of vibrational polaritons are studied when the molecular density distribution breaks the macroscopic translational symmetry along the cavity mirror plane. Both perturbative theory and numerical calculations show that, if a homogeneous in-plane molecular distribution is modulated by sinusoidal fluctuations, in addition to a pair of upper and lower polariton branches, a discrete number of side polariton branches may emerge in the polariton dispersion relation. Moreover, for a periodic Gaussian in-plane density distribution, only two, yet significantly broadened polariton branches exist in the spectra. This polariton linewidth broadening is caused by the scattering between cavity modes at neighboring in-plane frequencies due to the symmetry breaking, which is distinguished from known origins of polariton broadening such as the homogeneous broadening of molecules, the cavity loss, or the large energetic disorder of molecules. Associated with the broadened polariton branches, under the periodic Gaussian in-plane inhomogeneity, a significant number of the vibrational strong coupling eigenstates contain a non-zero contribution from the cavity photon mode at zero in-plane frequency, blurring the distinction between the bright and the dark modes. Looking forward, our theoretical investigation should facilitate the experimental exploration of vibrational polaritons with patterned in-plane molecular density distributions.

2.
J Chem Phys ; 161(6)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140447

RESUMO

Atomic-scale simulations have progressed tremendously over the past decade, largely thanks to the availability of machine-learning interatomic potentials. These potentials combine the accuracy of electronic structure calculations with the ability to reach extensive length and time scales. The i-PI package facilitates integrating the latest developments in this field with advanced modeling techniques thanks to a modular software architecture based on inter-process communication through a socket interface. The choice of Python for implementation facilitates rapid prototyping but can add computational overhead. In this new release, we carefully benchmarked and optimized i-PI for several common simulation scenarios, making such overhead negligible when i-PI is used to model systems up to tens of thousands of atoms using widely adopted machine learning interatomic potentials, such as Behler-Parinello, DeePMD, and MACE neural networks. We also present the implementation of several new features, including an efficient algorithm to model bosonic and fermionic exchange, a framework for uncertainty quantification to be used in conjunction with machine-learning potentials, a communication infrastructure that allows for deeper integration with electronic-driven simulations, and an approach to simulate coupled photon-nuclear dynamics in optical or plasmonic cavities.

3.
J Am Chem Soc ; 145(33): 18210-18214, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37555733

RESUMO

Leveraging localized surface plasmon resonances of metal nanoparticles to trigger chemical reactions is a promising approach for heterogeneous catalysis. First-principles modeling of such processes is challenging due to the large number of electrons and electronic excited states as well as the significance of nuclear quantum effects when hydrogen is involved. Herein, the nonadiabatic nuclear-electronic quantum dynamics of plasmon-induced H2 photodissociation near an Al13- cluster is simulated with real-time nuclear-electronic orbital time-dependent density functional theory (RT-NEO-TDDFT). This approach propagates the nonequilibrium quantum dynamics of both electrons and protons. The plasmonic oscillations are shown to inject hot electrons into the antibonding orbital of H2, thereby inducing H2 dissociation. The quantum mechanical treatment of the hydrogen nuclei leads to faster H2 photodissociation and slightly larger isotope effects. Analysis of the nonequilibrium electronic density suggests that these findings stem from enhanced excited-state electronic coupling between the plasmonic mode and the H2 antibonding orbital due to proton delocalization or zero-point energy effects. Given the low computational overhead for including nuclear quantum effects with the RT-NEO-TDDFT approach, this work paves the way for simulating nonadiabatic nuclear-electronic quantum dynamics in other plasmonic systems.

4.
J Am Chem Soc ; 145(1): 377-384, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36574620

RESUMO

Vibrational strong coupling (VSC) provides a novel means to modify chemical reactions and energy transfer pathways. To efficiently model chemical dynamics under VSC in the collective regime, herein a hybrid quantum mechanical/molecular mechanical (QM/MM) cavity molecular dynamics (CavMD) scheme is developed and applied to an experimentally studied chemical system. This approach can achieve linear scaling with respect to the number of molecules for a dilute solution under VSC by assuming that each QM solute molecule is surrounded by an independent MM solvent bath. Application of this approach to a dilute solution of Fe(CO)5 in n-dodecane under VSC demonstrates polariton dephasing to the dark modes and polariton-enhanced molecular nonlinear absorption. These simulations predict that strongly exciting the lower polariton may provide an energy transfer pathway that selectively excites the equatorial CO vibrations rather than the axial CO vibrations. Moreover, these simulations also directly probe the cavity effect on the dynamics of the Fe(CO)5 Berry pseudorotation reaction for comparison to recent two-dimensional infrared spectroscopy experiments. This theoretical approach is applicable to a wide range of other polaritonic systems and provides a tool for exploring the use of VSC for selective infrared photochemistry.


Assuntos
Simulação de Dinâmica Molecular , Vibração , Espectrofotometria Infravermelho/métodos , Fenômenos Químicos , Transferência de Energia
5.
Phys Rev Lett ; 131(23): 238002, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38134781

RESUMO

The coupled quantum dynamics of electrons and protons is ubiquitous in many dynamical processes involving light-matter interaction, such as solar energy conversion in chemical systems and photosynthesis. A first-principles description of such nuclear-electronic quantum dynamics requires not only the time-dependent treatment of nonequilibrium electron dynamics but also that of quantum protons. Quantum mechanical correlation between electrons and protons adds further complexity to such coupled dynamics. Here we extend real-time nuclear-electronic orbital time-dependent density functional theory (RT-NEO-TDDFT) to periodic systems and perform first-principles simulations of coupled quantum dynamics of electrons and protons in complex heterogeneous systems. The process studied is an electronically excited-state intramolecular proton transfer of o-hydroxybenzaldehyde in water and at a silicon (111) semiconductor-molecule interface. These simulations illustrate how environments such as hydrogen-bonding water molecules and an extended material surface impact the dynamical process on the atomistic level. Depending on how the molecule is chemisorbed on the surface, excited-state electron transfer from the molecule to the semiconductor surface can inhibit ultrafast proton transfer within the molecule. This Letter elucidates how heterogeneous environments influence the balance between the quantum mechanical proton transfer and excited electron dynamics. The periodic RT-NEO-TDDFT approach is applicable to a wide range of other photoinduced heterogeneous processes.

6.
Annu Rev Phys Chem ; 73: 43-71, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-34871038

RESUMO

Chemical manifestations of strong light-matter coupling have recently been a subject of intense experimental and theoretical studies. Here we review the present status of this field. Section 1 is an introduction to molecular polaritonics and to collective response aspects of light-matter interactions. Section 2 provides an overview of the key experimental observations of these effects, while Section 3 describes our current theoretical understanding of the effect of strong light-matter coupling on chemical dynamics. A brief outline of applications to energy conversion processes is given in Section 4. Pending technical issues in the construction of theoretical approaches are briefly described in Section 5. Finally, the summary in Section 6 outlines the paths ahead in this exciting endeavor.


Assuntos
Modelos Teóricos , Físico-Química , Fenômenos Físicos
7.
J Chem Phys ; 158(11): 114118, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36948810

RESUMO

Within the nuclear-electronic orbital (NEO) framework, the real-time NEO time-dependent density functional theory (RT-NEO-TDDFT) approach enables the simulation of coupled electronic-nuclear dynamics. In this approach, the electrons and quantum nuclei are propagated in time on the same footing. A relatively small time step is required to propagate the much faster electronic dynamics, thereby prohibiting the simulation of long-time nuclear quantum dynamics. Herein, the electronic Born-Oppenheimer (BO) approximation within the NEO framework is presented. In this approach, the electronic density is quenched to the ground state at each time step, and the real-time nuclear quantum dynamics is propagated on an instantaneous electronic ground state defined by both the classical nuclear geometry and the nonequilibrium quantum nuclear density. Because the electronic dynamics is no longer propagated, this approximation enables the use of an order-of-magnitude larger time step, thus greatly reducing the computational cost. Moreover, invoking the electronic BO approximation also fixes the unphysical asymmetric Rabi splitting observed in previous semiclassical RT-NEO-TDDFT simulations of vibrational polaritons even for small Rabi splitting, instead yielding a stable, symmetric Rabi splitting. For the intramolecular proton transfer in malonaldehyde, both RT-NEO-Ehrenfest dynamics and its BO counterpart can describe proton delocalization during the real-time nuclear quantum dynamics. Thus, the BO RT-NEO approach provides the foundation for a wide range of chemical and biological applications.

8.
Proc Natl Acad Sci U S A ; 117(31): 18324-18331, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32680967

RESUMO

We simulate vibrational strong coupling (VSC) and vibrational ultrastrong coupling (V-USC) for liquid water with classical molecular dynamics simulations. When the cavity modes are resonantly coupled to the O-H stretch mode of liquid water, the infrared spectrum shows asymmetric Rabi splitting. The lower polariton (LP) may be suppressed or enhanced relative to the upper polariton (UP) depending on the frequency of the cavity mode. Moreover, although the static properties and the translational diffusion of water are not changed under VSC or V-USC, we do find the modification of the orientational autocorrelation function of H2O molecules especially under V-USC, which could play a role in ground-state chemistry.

9.
J Chem Phys ; 156(13): 134106, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35395873

RESUMO

Under vibrational strong coupling (VSC), the formation of molecular polaritons may significantly modify the photo-induced or thermal properties of molecules. In an effort to understand these intriguing modifications, both experimental and theoretical studies have focused on the ultrafast dynamics of vibrational polaritons. Here, following our recent work [Li et al., J. Chem. Phys. 154, 094124 (2021)], we systematically study the mechanism of polariton relaxation for liquid CO2 under a weak external pumping. Classical cavity molecular dynamics (CavMD) simulations confirm that polariton relaxation results from the combined effects of (i) cavity loss through the photonic component and (ii) dephasing of the bright-mode component to vibrational dark modes as mediated by intermolecular interactions. The latter polaritonic dephasing rate is proportional to the product of the weight of the bright mode in the polariton wave function and the spectral overlap between the polariton and dark modes. Both these factors are sensitive to parameters such as the Rabi splitting and cavity mode detuning. Compared to a Fermi's golden rule calculation based on a tight-binding harmonic model, CavMD yields a similar parameter dependence for the upper polariton relaxation lifetime but sometimes a modest disagreement for the lower polariton. We suggest that this disagreement results from polariton-enhanced molecular nonlinear absorption due to molecular anharmonicity, which is not included in our analytical model. We also summarize recent progress on probing nonreactive VSC dynamics with CavMD.

10.
J Chem Phys ; 154(9): 094124, 2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33685184

RESUMO

Recent experiments have observed that the chemical and photophysical properties of molecules can be modified inside an optical Fabry-Pérot microcavity under collective vibrational strong coupling (VSC) conditions, and such modification is currently not well understood by theory. In an effort to understand the origin of such cavity-induced phenomena, some recent studies have focused on the effect of the cavity environment on the nonlinear optical response of the molecular subsystem. Here, we use a recently proposed protocol for classical cavity molecular dynamics simulations to numerically investigate the linear and the nonlinear response of liquid carbon dioxide under such VSC conditions following an optical pulse excitation. We find that applying a strong pulse of excitation to the lower hybrid light-matter state, i.e., the lower polariton (LP), can lead to an overall molecular nonlinear absorption that is enhanced by up to two orders of magnitude relative to the excitation outside the cavity. This polariton-enhanced multiphoton absorption also causes an ultrashort LP lifetime (0.2 ps) under strong illumination. Unlike usual polariton relaxation processes-whereby polaritonic energy transfers directly to the manifold of singly excited vibrational dark states-under the present mechanism, the LP transfers energy directly to the manifold of higher vibrationally excited dark states; these highly excited dark states subsequently relax to the manifold of singly excited states with a lifetime of tens of ps. Because the present mechanism is generic in nature, we expect these numerical predictions to be experimentally observed in different molecular systems and in cavities with different volumes.

11.
Angew Chem Int Ed Engl ; 60(28): 15533-15540, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33957010

RESUMO

For a small fraction of hot CO2 molecules immersed in a liquid-phase CO2 thermal bath, classical cavity molecular dynamics simulations show that forming collective vibrational strong coupling (VSC) between the C=O asymmetric stretch of CO2 molecules and a cavity mode accelerates hot-molecule relaxation. This acceleration stems from the fact that polaritons can be transiently excited during the nonequilibrium process, which facilitates intermolecular vibrational energy transfer. The VSC effects on these rates 1) resonantly depend on the cavity mode detuning, 2) cooperatively depend on Rabi splitting, and 3) collectively scale with the number of hot molecules. For larger cavity volumes, the average VSC effect per molecule can remain meaningful for up to N≈104 molecules forming VSC. Moreover, the transiently excited lower polariton prefers to relax by transferring its energy to the tail of the molecular energy distribution rather than distributing it equally to all thermal molecules. As far as the parameter dependence is concerned, the vibrational relaxation data presented here appear analogous to VSC catalysis in Fabry-Pérot microcavities.

12.
J Chem Phys ; 152(23): 234107, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32571066

RESUMO

Recent experiments suggest that vibrational strong coupling (VSC) may significantly modify ground-state chemical reactions and their rates even without external pumping. The intrinsic mechanism of this "vacuum-field catalysis" remains largely unclear. Generally, modifications of thermal reactions in the ground electronic states can be caused by equilibrium or non-equilibrium effects. The former are associated with modifications of the reactant equilibrium distribution as expressed by the transition state theory of chemical reaction rates, while the latter stem from the dynamics of reaching and leaving transition state configurations. Here, we examine how VSC can affect chemical reactions rates in a cavity environment according to transition state theory. Our approach is to examine the effect of coupling to cavity mode(s) on the potential of mean force (PMF) associated with the reaction coordinate. Within the context of classical nuclei and classical photons and also assuming no charge overlap between molecules, we find that while the PMF can be affected by the cavity environment, this effect is negligible for the usual micron-length cavities used to examine VSC situations.

13.
J Chem Phys ; 150(4): 044102, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30709254

RESUMO

The dynamics of an electronic system interacting with an electromagnetic field is investigated within mixed quantum-classical theory. Beyond the classical path approximation (where we ignore all feedback from the electronic system on the photon field), we consider all electron-photon interactions explicitly according to Ehrenfest (i.e., mean-field) dynamics and a set of coupled Maxwell-Liouville equations. Because Ehrenfest dynamics cannot capture certain quantum features of the photon field correctly, we propose a new Ehrenfest+R method that can recover (by construction) spontaneous emission while also distinguishing between electromagnetic fluctuations and coherent emission.

14.
J Chem Phys ; 150(4): 044103, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30709300

RESUMO

In Paper I [Chen et al., J. Chem. Phys. 150, 044102 (2019)], we introduced Ehrenfest+R dynamics for a two-level system and showed how spontaneous emission can be heuristically included such that, after averaging over an ensemble of Ehrenfest+R trajectories, one can recover both coherent and incoherent electromagnetic fields. In the present paper, we now show that Ehrenfest+R dynamics can also correctly describe Raman scattering, whose features are completely absent from standard Ehrenfest dynamics. Ehrenfest+R dynamics appear to be quantitatively accurate both for resonant and off-resonant Raman signals, as compared with Kramers-Heisenberg-Dirac theory.

15.
J Chem Theory Comput ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38912683

RESUMO

Developing theoretical frameworks for vibrational strong coupling (VSC) beyond the single-mode approximation is crucial for a comprehensive understanding of experiments with planar Fabry-Pérot cavities. Herein, a generalized cavity molecular dynamics (CavMD) scheme is developed to simulate VSC of a large ensemble of realistic molecules coupled to an arbitrary 1D or 2D photonic environment. This approach is built upon the Power-Zienau-Woolley Hamiltonian in the normal mode basis and uses a grid representation of the molecular ensembles to reduce the computational cost. When simulating the polariton dispersion relation for a homogeneous distribution of molecules in planar Fabry-Pérot cavities, our data highlight the importance of preserving the in-plane translational symmetry of the molecular distribution. In this homogeneous limit, CavMD yields the consistent polariton dispersion relation as an analytic theory, i.e., incorporating many cavity modes with varying in-plane wave vectors (k∥) produces the same spectrum as the system with a single cavity mode. Furthermore, CavMD reveals that the validity of the single-mode approximation is challenged when nonequilibrium polariton dynamics are considered, as polariton-polariton scattering occurs between modes with the nearest neighbor k∥. The procedure for numerically approaching the macroscopic limit is also demonstrated with CavMD by increasing the system size. Looking forward, our generalized CavMD approach may facilitate understanding vibrational polariton transport and condensation.

16.
J Phys Chem Lett ; 15(3): 751-757, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38226772

RESUMO

Unusual nuclear quantum effects may emerge near noble metal nanostructures such as squeezed vibrational states in molecular junctions and plasmonic resonance energy transfer in the infrared domain. Herein, nuclear quantum effects near heavy metals are studied by nuclear-electronic orbital density functional theory (NEO-DFT) with an effective core potential. For a quantum proton sandwiched between a pair of gold tips modeled by two Au6 clusters, NEO-DFT calculations suggest that the quantum proton density can be squeezed as the tip distance decreases. For an HF molecule placed near a one-dimensional Au nanowire composed of up to 34 Au atoms, real-time NEO time-dependent density functional theory (RT-NEO-TDDFT) shows that the infrared plasmonic motion within the Au nanowire may resonantly transfer electronic energy to the HF proton vibrational stretch mode. Overall, these calculations illustrate the advantages of the NEO approach for probing nuclear quantum effects, such as squeezed proton vibrational states and infrared plasmonic resonance energy transfer.

17.
J Phys Chem Lett ; 14(43): 9556-9562, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37857272

RESUMO

Simulating the nuclear-electronic quantum dynamics of large-scale molecular systems in the condensed phase is key for studying biologically and chemically important processes such as proton transfer and proton-coupled electron transfer reactions. Herein, the real-time nuclear-electronic orbital time-dependent density functional theory (RT-NEO-TDDFT) approach is combined with a hybrid quantum mechanical/molecular mechanical (QM/MM) strategy to enable the accurate description of coupled nuclear-electronic quantum dynamics in the presence of heterogeneous environments such as solvent or proteins. The densities of the electrons and quantum protons are propagated in real time, while the other nuclei are propagated classically on the instantaneous electron-proton vibronic surface. This approach is applied to phenol bound to lysozyme, intramolecular proton transfer in malonaldehyde, and nonequilibrium excited-state intramolecular proton transfer in o-hydroxybenzaldehyde. These examples illustrate that the RT-NEO-TDDFT framework, coupled with an atomistic representation of the environment, allows the simulation of condensed-phase systems that exhibit significant nuclear quantum effects.

18.
J Chem Theory Comput ; 18(5): 2774-2784, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35420037

RESUMO

Molecular polaritons have become an emerging platform for remotely controlling molecular properties through strong light-matter interactions. Herein, a semiclassical approach is developed for describing molecular polaritons by self-consistently propagating the real-time dynamics of classical cavity modes and a quantum molecular subsystem described by the nuclear-electronic orbital (NEO) method, where electrons and specified nuclei are treated quantum mechanically on the same level. This semiclassical real-time NEO approach provides a unified description of electronic and vibrational strong couplings and describes the impact of the cavity on coupled nuclear-electronic dynamics while including nuclear quantum effects. For a single o-hydroxybenzaldehyde molecule under electronic strong coupling, this approach shows that the cavity suppression of excited state intramolecular proton transfer is influenced not only by the polaritonic potential energy surface but also by the time scale of the chemical reaction. This work provides the foundation for exploring collective strong coupling in nuclear-electronic quantum dynamical systems within optical cavities.

19.
Nat Commun ; 13(1): 4203, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35858927

RESUMO

Selectively exciting target molecules to high vibrational states is inefficient in the liquid phase, which restricts the use of IR pumping to catalyze ground-state chemical reactions. Here, we demonstrate that this inefficiency can sometimes be solved by confining the liquid to an optical cavity under vibrational strong coupling conditions. For a liquid solution of 13CO2 solute in a 12CO2 solvent, cavity molecular dynamics simulations show that exciting a polariton (hybrid light-matter state) of the solvent with an intense laser pulse, under suitable resonant conditions, may lead to a very strong (>3 quanta) and ultrafast (<1 ps) excitation of the solute, even though the solvent ends up being barely excited. By contrast, outside a cavity the same input pulse fluence can excite the solute by only half a vibrational quantum and the selectivity of excitation is low. Our finding is robust under different cavity volumes, which may lead to observable cavity enhancement on IR photochemical reactions in Fabry-Pérot cavities.

20.
J Phys Chem Lett ; 13(17): 3890-3895, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35471100

RESUMO

A quantum simulation of vibrational strong coupling (VSC) in the collective regime via thermostated ring-polymer molecular dynamics (TRPMD) is reported. For a collection of liquid-phase water molecules resonantly coupled to a single lossless cavity mode, the simulation shows that as compared with a fully classical calculation, the inclusion of nuclear and photonic quantum effects does not lead to a change in the Rabi splitting but does broaden polaritonic line widths roughly by a factor of 2. Moreover, under thermal equilibrium, both quantum and classical simulations predict that the static dielectric constant of liquid water is largely unchanged inside vs outside the cavity. This result disagrees with a recent experiment demonstrating that the static dielectric constant of liquid water can be resonantly enhanced under VSC, suggesting either limitations of our approach or perhaps other experimental factors that have not yet been explored.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA