Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 480
Filtrar
1.
Nature ; 603(7900): 284-289, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35236981

RESUMO

Homo sapiens was present in northern Asia by around 40,000 years ago, having replaced archaic populations across Eurasia after episodes of earlier population expansions and interbreeding1-4. Cultural adaptations of the last Neanderthals, the Denisovans and the incoming populations of H. sapiens into Asia remain unknown1,5-7. Here we describe Xiamabei, a well-preserved, approximately 40,000-year-old archaeological site in northern China, which includes the earliest known ochre-processing feature in east Asia, a distinctive miniaturized lithic assemblage with bladelet-like tools bearing traces of hafting, and a bone tool. The cultural assembly of traits at Xiamabei is unique for Eastern Asia and does not correspond with those found at other archaeological site assemblages inhabited by archaic populations or those generally associated with the expansion of H. sapiens, such as the Initial Upper Palaeolithic8-10. The record of northern Asia supports a process of technological innovations and cultural diversification emerging in a period of hominin hybridization and admixture2,3,6,11.


Assuntos
Arqueologia , Hominidae , Comportamento de Utilização de Ferramentas , Animais , Osso e Ossos , China , História Antiga , Humanos , Homem de Neandertal
2.
Proc Natl Acad Sci U S A ; 119(49): e2212881119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36454754

RESUMO

Membrane properties are emerging as important cues for the spatiotemporal regulation of hormone signaling. Lysophosphatidic acid (LPA) evokes multiple biological responses by activating G protein-coupled receptors in mammals. In this study, we demonstrated that LPA derived from the mitochondrial glycerol-3-phosphate acyltransferases GPAT1 and GPAT2 is a critical lipid-based cue for auxin-controlled embryogenesis and plant growth in Arabidopsis thaliana. LPA levels decreased, and the polarity of the auxin efflux carrier PIN-FORMED1 (PIN1) at the plasma membrane (PM) was defective in the gpat1 gpat2 mutant. As a consequence of distribution defects, instructive auxin gradients and embryonic and postembryonic development are severely compromised. Further cellular and genetic analyses revealed that LPA binds directly to PIN1, facilitating the vesicular trafficking of PIN1 and polar auxin transport. Our data support a model in which LPA provides a lipid landmark that specifies membrane identity and cell polarity, revealing an unrecognized aspect of phospholipid patterns connecting hormone signaling with development.


Assuntos
Arabidopsis , Ácidos Indolacéticos , Animais , Lisofosfolipídeos , Arabidopsis/genética , Desenvolvimento Vegetal , Mamíferos
3.
J Cell Physiol ; 239(3): e30994, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36924038

RESUMO

This study aimed to investigate the role of protein kinase HIPK2 in depression and its associated mechanism. The chronic unpredictable mild stress (CUSM) model was constructed to simulate mice with depression to detect the mouse behaviors. Moreover, by using mouse microglial cells BV2 as the model. After conditional knockdown of HIPK2, the depressive behavior disorder of mice was improved, meanwhile, neuroinflammation was alleviated, and the M1 cell proportion was reduced. Similar results were obtained after applying the HIPK2 inhibitor tBID or ASO-HIPK2 treatment. HIPK2 was overexpressed in BV2 cells, which promoted M1 polarization of cells, while tBID suppressed the effect of HIPK2 and reduced the M1 polarized level in BV2 cells. Pull-down assay results indicated that HIPK2 bound to STAT3 and promoted STAT3 phosphorylation. We found that HIPK2 can bind to STAT3 to promote its phosphorylation, which accelerates M1 polarization of microglial cells, aggravates the depressive neuroinflammation, and leads to abnormal behaviors. HIPK2 is promising as the new therapeutic target of depression.


Assuntos
Depressão , Microglia , Doenças Neuroinflamatórias , Proteínas Serina-Treonina Quinases , Fator de Transcrição STAT3 , Animais , Camundongos , Depressão/genética , Depressão/metabolismo , Microglia/metabolismo , Doenças Neuroinflamatórias/metabolismo , Fosforilação , Transdução de Sinais , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Polaridade Celular
4.
Anal Chem ; 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39347690

RESUMO

A metasurface as an artificial electromagnetic structure can concentrate optical energy into nanometric volumes to strongly enhance the light-matter interaction, which has been becoming a powerful platform for optical sensing, nonlinear effects, and quantum optics. Herein, we developed a novel hybrid plasmonic-dielectric metasurface consisting of Au nanorings (Au NRs) and TiO2 nanoparticles derived from MXene (TiO2 NPs@MXene). The hybrid metasurface simultaneously benefited from the high near-field enhancement effect of plasmonic materials and the low loss of dielectric materials. Furthermore, the optical modulation efficiency of the hybrid metasurface can be regulated by a magnetic mirror configuration. The magnetic mirror acted like a mirror, confining the electrons to a limited region and increasing the density of the surface plasmon. Moreover, the electrochemiluminescence (ECL) of the Cu2BDC metal-organic framework (Cu2BDC-MOF) served as a light source for the Au NRs/TiO2 NPs@MXene metasurface. Due to the exceptional light manipulation capability of the hybrid metasurface and the coordination of the magnetic mirror, the isotropic ECL signal can be dynamically amplified and converted into polarized emission. Finally, a metasurface-regulated ECL (MECL)-based biosensor with a dual-positive membrane protein recognition strategy was developed for the accurate identification of gastric cancer-derived extracellular vesicles. The novel MECL research opened up a new route in the realization of dynamically tunable metasurfaces for optical sensing and novel nanophotonic devices.

5.
Cancer Cell Int ; 24(1): 301, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39217351

RESUMO

Small extracellular vesicles (sEVs) are important mediators of intercellular communication between tumor cells and their surrounding environment. Furthermore, the mechanisms by which miRNAs carried in tumor sEVs regulate macrophage polarization remain largely unknown. To concentrate sEVs, we used the traditional ultracentrifugation method. Western blot, NanoSight, and transmission electron microscopy were used to identify sEVs. To determine the function of sEVs-miR-487a, we conducted in vivo and in vitro investigations. The intercellular communication mechanism between osteosarcoma cells and M2 macrophages, mediated by sEVs carrying miR-487a, was validated using luciferase reporter assays, transwell assays, and Western blot analysis. In vitro, sEVs enriched in miR-487a and delivered miR-487a to macrophages, promoting macrophage polarization toward an M2-like type, which promotes proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of osteosarcoma cells. In vivo, sEVs enriched in miR-487a facilitate lung metastasis of osteosarcoma. Moreover, plasma miR-487a in sEVs was shown to be a potential biomarker applicable for osteosarcoma diagnosis. In summary, miR-487a derived from osteosarcoma cells can be transferred to macrophages via sEVs, then promote macrophage polarization towards an M2-like type by targeting Notch2 and activating the GATA3 pathway. In a feedback loop, the activation of macrophages accelerates epithelial-mesenchymal transition (EMT), which in turn promotes the migration, invasion, and lung metastasis of osteosarcoma cells. This reciprocal interaction between activated macrophages and osteosarcoma cells contributes to the progression of the disease. Our data demonstrate a new mechanism that osteosarcoma tumor cells derived exosomal-miR-487a which is involved in osteosarcoma development by regulating macrophage polarization in tumor microenvironment (TME).

6.
Chemistry ; : e202402930, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39269730

RESUMO

Sp2-carbon (sp2-c) covalent organic frameworks (COFs), featuring distinctive π-conjugated network structures, facilitate the migration of photo-generated carriers, rendering them exceptionally appealing for applications in photoelectrochemical water splitting. However, owing to the powdery nature of COFs, leaving anchor the sp2-c COFs powder tightly onto a conductive substrate challenging. Here, we propose a method for preparing photoactive substance-conductive substrate integrated photocathodes through copper surface-mediated knoevenagel polycondensation (Cu-SMKP), this approach results in a uniform and stable sp2-c COF film, directly grown on commercial copper foam (COFTh-Cu). The COFTh-Cu demonstrates a high H2-evolution photocurrent density of 56 µA cm-2 at 0.3 V versus RHE, sustaining stability for 12 hours. The as-prepared COFTh-Cu represents a 4.5-fold increase in current density compared to traditional spin-coating methods and outperforms most COF photocathodes without cocatalysts. This innovative copper surface-mediated approach for preparing photocathodes opens up a crucial pathway towards the realization of highly active COF photocathodes.

7.
Cell Mol Neurobiol ; 44(1): 33, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625414

RESUMO

Subarachnoid hemorrhage (SAH) is associated with high mortality and disability rates, and secondary white matter injury is an important cause of poor prognosis. However, whether brain capillary pericytes can directly affect the differentiation and maturation of oligodendrocyte precursor cells (OPCs) and subsequently affect white matter injury repair has still been revealed. This study was designed to investigate the effect of tissue inhibitor of metalloproteinase-3 (TIMP-3) for OPC differentiation and maturation. PDGFRßret/ret and wild-type C57B6J male mice were used to construct a mouse model of SAH via endovascular perforation in this study. Mice were also treated with vehicle, TIMP-3 RNAi or TIMP-3 RNAi + TIMP-3 after SAH. The effect of TIMP-3 on the differentiation and maturation of OPCs was determined using behavioral score, ELISA, transmission electron microscopy, immunofluorescence staining and cell culture. We found that TIMP-3 was secreted mainly by pericytes and that SAH and TIMP-3 RNAi caused a significant decrease in the TIMP-3 content, reaching a nadir at 24 h, followed by gradual recovery. In vitro, the myelin basic protein content of oligodendrocytes after oxyhemoglobin treatment was increased by TIMP-3 overexpression. The data indicates TIMP-3 could promote the differentiation and maturation of OPCs and subsequently improve neurological outcomes after SAH. Therefore, TIMP-3 could be beneficial for repair after white matter injury and could be a potential therapeutic target in SAH.


Assuntos
Células Precursoras de Oligodendrócitos , Hemorragia Subaracnóidea , Substância Branca , Masculino , Animais , Camundongos , Inibidor Tecidual de Metaloproteinase-3 , Encéfalo
8.
Bioorg Med Chem Lett ; 97: 129542, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37939861

RESUMO

Proprotein convertase subtilisin kexin type 9 (PCSK9) is a clinically validated target on the treatment of cardiovascular disease (CVD). PCSK9 can regulate the hepatocyte surface low density lipoprotein receptor (LDLR) level by binding to LDLR and leading to their degradation in the lysosome. The clinical use of two monoclonal antibodies (alirocumab and evolocumab, approved in 2015) and one small interfering RNA (inclisiran, approved in 2020) which can inhibit PCSK9 function proved that they are very effective in lowering low density lipoprotein cholesterol (LDL-C). However, the high treatment costs and parenteral administration of these drugs prohibited widespread use and reduced their long-term advantage. Comparatively, small molecule drugs have many incomparable advantages of macromolecules, such as lower treatment cost, more drug administration options, superior pharmacokinetic properties, less adverse immunogenic responses and better affordable production. In this paper, we identified a series of benzothiazoles small molecule PCSK9 inhibitors through extensive screening. The structure and activity relationship (SAR) was summarized to facilitate further optimization. Moreover, the primary mechanism of action of the most potent compound was also investigated.


Assuntos
Anticolesterolemiantes , Benzotiazóis , Inibidores de PCSK9 , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Anticolesterolemiantes/uso terapêutico , LDL-Colesterol , Pró-Proteína Convertase 9/metabolismo , Benzotiazóis/química , Benzotiazóis/farmacologia
9.
J Biochem Mol Toxicol ; 38(9): e23825, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39194333

RESUMO

We investigated the role and mechanism of ginsenoside RD (GRD) in acute liver injury. Network pharmacology was used to analyze the correlations among GRD-liver injury-pyroptosis targets. A mouse model of acute liver injury was established by lipopolysaccharide + d-galactose(LPS + d/Gal). After pretreatment with GRD, the changes in mouse liver function were detected. The histopathological changes were assayed by hematoxylin and eosin and Masson staining, the tissue expressions of inflammatory cytokines were detected by enzyme-linked immunosorbent assay, and the protein expressions were assayed by immunohistochemical staining and Western blotting. Meanwhile, mechanism research was conducted using STAT3-knockout transgenic mice and STAT3-IN13, a STAT3 inhibitor. GRD inhibited liver injury, mitigated tissue inflammation, and suppressed STAT3-mediated pyroptosis in mice. After applying STAT3-knockout mouse model or STAT3-IN13, GRD did not further inhibit the liver injury. GRD can resist liver injury by inhibiting the STAT3-mediated pyroptosis, which is one of the hepatoprotective mechanisms of GRD.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Ginsenosídeos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fator de Transcrição STAT3 , Animais , Ginsenosídeos/farmacologia , Fator de Transcrição STAT3/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Camundongos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/patologia , Masculino , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Fígado/patologia , Fígado/efeitos dos fármacos , Piroptose/efeitos dos fármacos
10.
Bioorg Chem ; 142: 106962, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37992623

RESUMO

Two new dimeric Lycopodium alkaloids, casuattimines A and B (1 and 2), along with twelve previously undescribed Lycopodium alkaloids, casuattimines C-N (3-14), and eight known Lycopodium alkaloids, were isolated from Lycopodiastrum casuarinoides. Casuattimines A and B (1 and 2) are the first two ether-linked Lycopodium alkaloid dimers. Casuattimines C and D (3 and 4) are unique Lycopodium alkaloids characterized by a long fatty acid chain. Structural elucidation was achieved through HRESIMS, NMR, and electronic circular dichroism (ECD) calculations. In addition, the absolute configurations of compounds 7, 13, and 14 were determined by single crystal X-ray diffraction. Compounds 1, 2, and 4 demonstrated notable Cav3.1 channel inhibitory activities presenting IC50 values of 10.75 ± 1.02 µM, 9.33 ± 0.79 µM, and 7.14 ± 0.86 µM, respectively. The dynamics of compound 4 against the Cav3.1 channel and preliminary structure-activity relationships of these active Lycopodium alkaloids were also discussed.


Assuntos
Alcaloides , Lycopodiaceae , Lycopodium , Lycopodium/química , Estrutura Molecular , Inibidores da Colinesterase/farmacologia , Lycopodiaceae/química , Alcaloides/farmacologia , Alcaloides/química
11.
Cell Mol Life Sci ; 80(12): 349, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37930405

RESUMO

Atoh1 overexpression is essential for hair cell (HC) regeneration in the sensory epithelium of mammalian auditory and vestibular organs. However, Atoh1 overexpression alone cannot induce fully mature and functional HCs in the mammalian inner ear. In the current study, we investigated the effect of Atoh1 constitutive overexpression in native HCs by manipulating Atoh1 expression at different developmental stages. We demonstrated that constitutive overexpression of Atoh1 in native vestibular HCs did not affect cell survival but did impair vestibular function by interfering with the subtype differentiation of HCs and hair bundle development. In contrast, Atoh1 overexpression in cochlear HCs impeded their maturation, eventually leading to gradual HC loss in the cochlea and hearing dysfunction. Our study suggests that time-restricted Atoh1 expression is essential for the differentiation and survival of HCs in the inner ear, and this is pivotal for both hearing and vestibular function re-establishment through Atoh1 overexpression-induced HC regeneration strategies.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Orelha Interna , Células Ciliadas Auditivas , Animais , Diferenciação Celular , Sobrevivência Celular , Cóclea , Mamíferos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia
12.
BMC Pediatr ; 24(1): 584, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39277760

RESUMO

BACKGROUND: Gastroschisis is a common abdominal wall defect that increases infant mortality risk and health care costs. However, recent epidemiological data on gastroschisis in China is limited. METHODS: Using 2007-2020 data from the Chinese Birth Defects Monitoring Network (CBDMN), we analyzed gastroschisis prevalence rates stratified by birth year, maternal age group, residence area, geographical region, and infant sex. We also examined the temporal variations in prevalence, pregnancy outcomes of affected infants, prenatal diagnoses, and co-occurring anomalies. RESULTS: From 2007 to 2020, a total of 6,813 cases of gastroschisis were identified among 25,909,000 births, comprising 4,675 isolated and 2,138 non-isolated cases. Prevalence rates per 10,000 live and still births were 2.63, 1.80, and 0.83 for the overall, isolated, and non-isolated gastroschisis, respectively, all showing a decreasing trend over the study period. The prevalence of overall gastroschisis varied significantly by maternal age (< 20 years, 9.88/10,000; 20-24 years, 4.17/10,000; 25-29 year, 2.08/10,000; 30-34 years, 1.88/10,000;≥35 years, 2.24/10,000), maternal residence (urban, 2.45/10,000; rural, 2.85/10,000), geographic region (central, 2.54/10,000; east, 2.57/10,000; west, 2.80/10,000), and infant sex (male, 2.13/10,000; female, 1.79/10,000). Non-isolated gastroschisis cases had a higher early neonatal mortality rate than isolated cases (41.91% vs. 28.10%) and frequently co-occurred with musculoskeletal anomalies. CONCLUSIONS: This study highlights a declining trend in gastroschisis prevalence in Chinese population, a contrast to previous studies, and underscores the need for improved perinatal management due to adverse pregnancy outcomes associated with this condition.


Assuntos
Gastrosquise , Humanos , Gastrosquise/epidemiologia , China/epidemiologia , Feminino , Masculino , Prevalência , Recém-Nascido , Idade Materna , Adulto Jovem , Adulto , Vigilância da População , Gravidez , Resultado da Gravidez/epidemiologia , Lactente
13.
Ecotoxicol Environ Saf ; 285: 117080, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39332203

RESUMO

OBJECTIVE: Epidemiologic investigations have examined the correlation between air pollution and neurologic disorders and neuroanatomic structures. Increasing evidence underscores the profound influence of the gut microbiota on brain health. However, the existing evidence is equivocal, and a causal link remains uncertain. This study aimed: to determine if there is a causal connection between four key air pollutants, and 42 neurologic diseases, and 1325 distinct brain structures; and to explore the potential role of the gut microbiota in mediating these associations. METHODS: Univariable Mendelian randomization (UVMR) and multivariable Mendelian randomization (MVMR) models were deployed to estimate the causal impact of air pollutants (including particulate matter [PM] with aerodynamic diameters <2.5 µm [PM2.5], and <10 µm [PM10]; PM2.5 absorbance; and nitrogen oxides [NOx]) on brain health through various Mendelian randomization methodologies. Lastly, the mediating role of the gut microbiome in the connections between the identified pollutants and neurologic diseases and brain structures was systematically examined. RESULTS: The potential causal associations of PM2.5, PM2.5 absorbance, PM10, and exposure to NOx, with the risks of intracerebral hemorrhage, hippocampal perivascular spaces, large artery strokes, generalized epilepsy with tonic-clonic seizures, Alzheimer's disease, multiple sclerosis, anorexia nervosa, post-traumatic stress disorder (PTSD), and 420 brain structures, were investigated by UVMR analysis. Following adjustment for air pollutants by MVMR analysis, the genetic correlations between PM10 exposure and PTSD and multiple sclerosis remained significant and robust. Importantly, we observed that phylum Lentisphaerae may mediate the association between PM10 and multiple sclerosis. Additionally, PM2.5 absorbance with a greater risk of reduced thickness in the left anterior transverse temporal gyrus of Heschl and a decreased area in the right sulcus intermedius primus of Jensen, mediated by genus Senegalimassilia and genus Lachnospiraceae UCG010, respectively. Finally, we provided evidence that Clostridium innocuum and genus Ruminococcus2 may partly mediate the causal effect of NOx on altered thickness in the left transverse temporal cortex and area in the right sulcus intermedius primus of Jensen, respectively. CONCLUSION: This study established a genetic connection between air pollution and brain health, implicating the gut microbiota as a potential mediator in the relationship between air pollution, neurologic disorders, and altered brain structures.

14.
Chem Biodivers ; 21(4): e202400182, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38315068

RESUMO

Voltage-gated calcium channels (VGCCs), particularly T-type calcium channels (TTCCs), are crucial for various physiological processes and have been implicated in pain, epilepsy, and cancer. Despite the clinical trials of TTCC blockers like Z944 and MK8998, none are currently available on the market. This study investigates the efficacy of Lycopodium alkaloids, particularly as natural product-based TTCC blockers. We synthesized eighteen derivatives from α-obscurine, a lycodine-type alkaloid, and identified five derivatives with significant Cav3.1 blockade activity. The most potent derivative, compound 7, exhibited an IC50 value of 0.19±0.03 µM and was further analyzed through molecular docking, revealing key interactions with Cav3.1. These findings provide a foundation for the structural optimization of Cav3.1 calcium channel blockers and present compound 7 as a promising lead compound for drug development and a tool for chemical biology research.


Assuntos
Alcaloides , Bloqueadores dos Canais de Cálcio , Humanos , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/química , Simulação de Acoplamento Molecular , Alcaloides/farmacologia , Alcaloides/química , Dor , Cálcio
15.
Chem Biodivers ; 21(4): e202400209, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38419385

RESUMO

One new fawcettimine-type Lycopodium alkaloid, hupertimine F (1), together with five known (2-6) Lycopodium alkaloids were isolated from Huperzia goebelii. The structure of 1 was elucidated by 1D and 2D NMR spectra, HRESIMS, and X-ray diffraction. Structurally, 1 represents the fourth example of Lycopodium alkaloids characterized by a 5/5/5/5/6 pentacyclic ring system with a 1-aza-7-oxabicyclo[2.2.1]heptane moiety. These known compounds 2, 3, 5, and 6 were isolated from H. goebelii for the first time. Compounds 1-6 were evaluated for acetylcholinesterase, butyrylcholinesterase and monoamine oxidase B inhibitory activities in vitro.


Assuntos
Alcaloides , Huperzia , Lycopodium , Huperzia/química , Lycopodium/química , Butirilcolinesterase , Acetilcolinesterase/química , Estrutura Molecular , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Alcaloides/farmacologia , Alcaloides/química
16.
Molecules ; 29(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38611859

RESUMO

A novel Lycopodium alkaloid, lycocasine A (1), and seven known Lycopodium alkaloids (2-8), were isolated from Lycopodiastrum casuarinoides. Their structures were determined through NMR, HRESIMS, and X-ray diffraction analysis. Compound 1 features an unprecedented 5/6/6 tricyclic skeleton, highlighted by a 5-aza-tricyclic[6,3,1,02,6]dodecane motif. In bioactivity assays, compound 1 demonstrated weak inhibitory activity against acid-sensing ion channel 1a.


Assuntos
Alcaloides , Lycopodiaceae , Lycopodium , Canais Iônicos Sensíveis a Ácido , Alcaloides/farmacologia , Azacitidina
17.
Clin Immunol ; 257: 109844, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37984483

RESUMO

PURPOSE: Interferon-stimulated gene 15 (ISG15) deficiency, a rare human inborn error of immunity characterized by susceptibility to Bacillus Calmette-Guerin (BCG) diseases, neuropathic and dermatological manifestations. METHODS: The clinical and immunological features of two siblings with ISG15 deficiency combined with asymptomatic myeloperoxidase (MPO) mutations were analyzed, and their pathogenesis, as well as target therapeutic candidates, were explored. RESULTS: The manifestation in patient 2 was skin lesions, while those in patient 1 were intracranial calcification and recurrent pneumonia. Whole-exome identified novel, dual mutations in ISG15 and MPO. PBMCs and B cell lines derived from the patients showed hyper-activated JAK/STAT signaling. Normal neutrophil function excluded pathogenicity caused by the MPO mutation. RNA sequencing identified baricitinib as therapeutic candidate. CONCLUSIONS: We report two sibling patients harboring the same novel ISG15 mutation showing diverse clinical features, and one harbored a rare phenotype of pneumonia. These findings expand the clinical spectrum of ISG15 deficiency and identify baricitinib as therapeutic candidate.


Assuntos
Interferons , Pneumonia , Humanos , Citocinas/genética , Citocinas/metabolismo , Interferons/genética , Mutação , Irmãos , Ubiquitinas/genética , Ubiquitinas/metabolismo
18.
Liver Int ; 43(7): 1604-1613, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37249033

RESUMO

Our previous study found that double negative T cells (DNTs) could promote the NLRP3 activation through high expression of TNF-α, thereby leading to hepatic fibrosis progression. We focused on investigating the role and mechanism of DNTs in regulating the Th9 cells differentiation in liver fibrosis. In our results, among patients with liver fibrosis, the proportions of peripheral blood DNTs and Th9 cells were up-regulated and positively correlated. While promoting the progression of liver fibrosis in mice, DNTs could elevate the proportion of Th9 cells and activate the TNFR2-STAT5-NF-κB pathway. The use of IL-9 and TNF-α monoclonal antibodies (mAbs) inhibited the effect of DNTs and lowered the proportion of Th9 cells in tissues. In vitro experiments showed that DNTs could promote the Th9 cells differentiation of Naive T cells, while TNF-α mAbs could inhibit such effect of DNTs to lower the proportion of Th9 cells. We found that DNTs can activate TNFR2-STAT5-NF-κB pathway by secreting TNF-α, thereby promoting the Th9 Cells differentiation to facilitate the progression of liver fibrosis. There is interaction between DNTs and Th9 cells.


Assuntos
Receptores Tipo II do Fator de Necrose Tumoral , Linfócitos T Auxiliares-Indutores , Camundongos , Animais , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Fator de Transcrição STAT5/metabolismo , Fator de Necrose Tumoral alfa , NF-kappa B/metabolismo , Interleucina-9/metabolismo , Diferenciação Celular , Cirrose Hepática/metabolismo
19.
J Biochem Mol Toxicol ; 37(12): e23483, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37503908

RESUMO

This study aimed to investigate the role and mechanism of tumor necrosis factor-like weak inducer of apoptosis (TWEAK) in liver fibrosis. The liver Kupffer cells (KCs) and mononuclear macrophages (J774A.1) were used as the objects of study to induce M1 polarization with LPS/IFN-γ. After TWEAK intervention, the M1 cell proportion and marker cytokine levels were detected. Thereafter, CD266 expression was silenced, and NLRP3 expression was inhibited by the NLRP3 inhibitor, so as to investigate the impact of TWEAK on M1 polarization of KCs. In addition, the mouse model of liver fibrosis was constructed to observe the influence of TWEAK on mouse liver fibrosis. According to our results, TWEAK promoted M1 polarization of liver KCs and J774A.1 cells, and silencing CD266 expression or treatment with the NLRP3 inhibitor suppressed the effect of TWEAK. In the mouse experiment, it was discovered that after knocking down NLRP3 expression or using NLRP3 inhibitor to antagonize the effect of TWEAK, the mouse liver function and M1 cell level in liver tissues were improved.


Assuntos
Cirrose Hepática , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Camundongos , Fibrose , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fatores de Necrose Tumoral/metabolismo
20.
J Biochem Mol Toxicol ; 37(2): e23245, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36281492

RESUMO

We found that the expression of microRNA (miRNA)-9a-5p decreased in inflammatory bowel diseases (IBD; ulcerative colitis and Crohn's disease). Further, we revealed the effects and mechanisms of miRNA-9a-5p for regulating IBD progression. In C57BL/6N mice, IBD was induced with dextran sodium sulfate (DSS), and the effects of endogenous miRNA-9a-5p were mimicked/antagonized through intraperitoneal injection of miRNA-9a-5p agomir and antagomir. In animal experimentation, agomir could inhibit intestinal inflammation and tissue damage, and reduce the mucosal barrier permeability. Antagomir, on the other hand, could promote barrier damage, whose effect was associated with the M1 macrophage polarization. This study finds that miRNA-9a-5p targets NOX4 to suppress ROS production, which plays an important role in mucosal barrier damage in IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , MicroRNAs , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Antagomirs/farmacologia , Camundongos Endogâmicos C57BL , Doenças Inflamatórias Intestinais/induzido quimicamente , Macrófagos/metabolismo , Modelos Animais de Doenças , NADPH Oxidase 4/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA