Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Med Genet ; 5: 24, 2004 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-15447792

RESUMO

BACKGROUND: Mutant alleles of TMPRSS3 are associated with nonsyndromic recessive deafness (DFNB8/B10). TMPRSS3 encodes a predicted secreted serine protease, although the deduced amino acid sequence has no signal peptide. In this study, we searched for mutant alleles of TMPRSS3 in families from Pakistan and Newfoundland with recessive deafness co-segregating with DFNB8/B10 linked haplotypes and also more thoroughly characterized the genomic structure of TMPRSS3. METHODS: We enrolled families segregating recessive hearing loss from Pakistan and Newfoundland. Microsatellite markers flanking the TMPRSS3 locus were used for linkage analysis. DNA samples from participating individuals were sequenced for TMPRSS3. The structure of TMPRSS3 was characterized bioinformatically and experimentally by sequencing novel cDNA clones of TMPRSS3. RESULTS: We identified mutations in TMPRSS3 in four Pakistani families with recessive, nonsyndromic congenital deafness. We also identified two recessive mutations, one of which is novel, of TMPRSS3 segregating in a six-generation extended family from Newfoundland. The spectrum of TMPRSS3 mutations is reviewed in the context of a genotype-phenotype correlation. Our study also revealed a longer isoform of TMPRSS3 with a hitherto unidentified exon encoding a signal peptide, which is expressed in several tissues. CONCLUSION: Mutations of TMPRSS3 contribute to hearing loss in many communities worldwide and account for 1.8% (8 of 449) of Pakistani families segregating congenital deafness as an autosomal recessive trait. The newly identified TMPRSS3 isoform e will be helpful in the functional characterization of the full length protein.


Assuntos
Alelos , Surdez/genética , Proteínas de Membrana/genética , Mutação , Proteínas de Neoplasias/genética , Serina Endopeptidases/genética , Sequência de Aminoácidos , Sequência de Bases , Feminino , Genes Recessivos , Humanos , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Terra Nova e Labrador , Paquistão , Linhagem , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo
2.
Otolaryngol Clin North Am ; 35(2): 275-85, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12391618

RESUMO

Like many areas of medicine, the rapid advances in genetics and molecular biology are revolutionizing our understanding of hearing and balance disorders. Dramatic progress has been made in identifying deafness genes in the past few years. These genes encode proteins of diverse function, including transcription factors, cytoskeletal and extracellular matrix components, and ion channels. The diversity of the genes so far identified is testimony to the complexities of auditory development and function and the power of genetic approaches. In what is about to become the postgenomic era, the study of the proteins encoded by these genes will advance our understanding of auditory development and function and lead to innovative approaches toward the treatment of patients with hearing disorders.


Assuntos
Perda Auditiva Neurossensorial/genética , Humanos
3.
Eur J Hum Genet ; 17(5): 554-64, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19107147

RESUMO

We studied a consanguineous family (Family A) from the island of Newfoundland with an autosomal recessive form of prelingual, profound, nonsyndromic sensorineural hearing loss. A genome-wide scan mapped the deafness trait to 10q21-22 (max LOD score of 4.0; D10S196) and fine mapping revealed a 16 Mb ancestral haplotype in deaf relatives. The PCDH15 gene was mapped within the critical region and was an interesting candidate because truncating mutations cause Usher syndrome type IF (USH1F) and two missense mutations have been previously associated with isolated deafness (DFNB23). Sequencing of the PCDH15 gene revealed 33 sequencing variants. Three of these variants were homozygous exclusively in deaf siblings but only one of them was not seen in ethnically matched controls. This novel c.1583 T>A transversion predicts an amino-acid substitution of a valine with an aspartic acid at codon 528 (V528D). Like the two DFNB23 mutations, the V528D mutation in Family A occurs in a highly conserved extracellular cadherin (EC) domain of PCDH15 and is predicted to be more deleterious than the previously identified DFNB23 missense mutations (R134G and G262D). Physical assessment, vestibular and visual function testing in deaf adults ruled out syndromic deafness because of Usher syndrome. This study validates the DFNB23 designation and supports the hypothesis that missense mutations in conserved motifs of PCDH15 cause nonsyndromic hearing loss. This emerging genotype-phenotype correlation in USH1F is similar to that in several other USH1 genes and cautions against a prognosis of a dual sensory loss in deaf children found to be homozygous for hypomorphic mutations at the USH1F locus.


Assuntos
Caderinas/genética , Cromossomos Humanos Par 10/genética , Surdez/genética , Mutação de Sentido Incorreto , Audiometria de Tons Puros , Sequência de Bases , Proteínas Relacionadas a Caderinas , Mapeamento Cromossômico , Consanguinidade , Análise Mutacional de DNA , Surdez/patologia , Surdez/fisiopatologia , Saúde da Família , Feminino , Frequência do Gene , Genótipo , Geografia , Humanos , Masculino , Terra Nova e Labrador , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA