Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
Nucleic Acids Res ; 52(D1): D835-D849, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37889051

RESUMO

The high cost of large-scale, high-coverage whole-genome sequencing has limited its application in genomics and genetics research. The common approach has been to impute whole-genome sequence variants obtained from a few individuals for a larger population of interest individually genotyped using SNP chip. An alternative involves low-coverage whole-genome sequencing (lcWGS) of all individuals in the larger population, followed by imputation to sequence resolution. To overcome limitations of processing lcWGS data and meeting specific genotype imputation requirements, we developed AGIDB (https://agidb.pro), a website comprising tools and database with an unprecedented sample size and comprehensive variant decoding for animals. AGIDB integrates whole-genome sequencing and chip data from 17 360 and 174 945 individuals, respectively, across 89 species to identify over one billion variants, totaling a massive 688.57 TB of processed data. AGIDB focuses on integrating multiple genotype imputation scenarios. It also provides user-friendly searching and data analysis modules that enable comprehensive annotation of genetic variants for specific populations. To meet a wide range of research requirements, AGIDB offers downloadable reference panels for each species in addition to its extensive dataset, variant decoding and utility tools. We hope that AGIDB will become a key foundational resource in genetics and breeding, providing robust support to researchers.


Assuntos
Bases de Dados Genéticas , Genômica , Polimorfismo de Nucleotídeo Único , Animais , Humanos , Genoma , Estudo de Associação Genômica Ampla , Genótipo , Análise de Sequência , Uso da Internet
2.
PLoS Genet ; 19(6): e1010820, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37339141

RESUMO

BACKGROUND: The lack of integrated analysis of genome-wide association studies (GWAS) and 3D epigenomics restricts a deep understanding of the genetic mechanisms of meat-related traits. With the application of techniques as ChIP-seq and Hi-C, the annotations of cis-regulatory elements in the pig genome have been established, which offers a new opportunity to elucidate the genetic mechanisms and identify major genetic variants and candidate genes that are significantly associated with important economic traits. Among these traits, loin muscle depth (LMD) is an important one as it impacts the lean meat content. In this study, we integrated cis-regulatory elements and genome-wide association studies (GWAS) to identify candidate genes and genetic variants regulating LMD. RESULTS: Five single nucleotide polymorphisms (SNPs) located on porcine chromosome 17 were significantly associated with LMD in Yorkshire pigs. A 10 kb quantitative trait locus (QTL) was identified as a candidate functional genomic region through the integration of linkage disequilibrium and linkage analysis (LDLA) and high-throughput chromosome conformation capture (Hi-C) analysis. The BMP2 gene was identified as a candidate gene for LMD based on the integrated results of GWAS, Hi-C meta-analysis, and cis-regulatory element data. The identified QTL region was further verified through target region sequencing. Furthermore, through using dual-luciferase assays and electrophoretic mobility shift assays (EMSA), two SNPs, including SNP rs321846600, located in the enhancer region, and SNP rs1111440035, located in the promoter region, were identified as candidate SNPs that may be functionally related to the LMD. CONCLUSIONS: Based on the results of GWAS, Hi-C, and cis-regulatory elements, the BMP2 gene was identified as an important candidate gene regulating variation in LMD. The SNPs rs321846600 and rs1111440035 were identified as candidate SNPs that are functionally related to the LMD of Yorkshire pigs. Our results shed light on the advantages of integrating GWAS with 3D epigenomics in identifying candidate genes for quantitative traits. This study is a pioneering work for the identification of candidate genes and related genetic variants regulating one key production trait (LMD) in pigs by integrating genome-wide association studies and 3D epigenomics.


Assuntos
Epigenômica , Estudo de Associação Genômica Ampla , Suínos/genética , Animais , Estudo de Associação Genômica Ampla/métodos , Locos de Características Quantitativas/genética , Músculos , Fenótipo , Polimorfismo de Nucleotídeo Único
3.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36575830

RESUMO

Creating synthetic lines is the standard mating mode for commercial pig production. Traditional mating performance was evaluated through a strictly designed cross-combination test at the 'breed level' to maximize the benefits of production. The Duroc-Landrace-Yorkshire (DLY) three-way crossbred production system became the most widely used breeding scheme for pigs. Here, we proposed an 'individual level' genomic mating procedure that can be applied to commercial pig production with efficient algorithms for estimating marker effects and for allocating the appropriate boar-sow pairs, which can be freely accessed to public in our developed HIBLUP software at https://www.hiblup.com/tutorials#genomic-mating. A total of 875 Duroc boars, 350 Landrace-Yorkshire sows and 3573 DLY pigs were used to carry out the genomic mating to assess the production benefits theoretically. The results showed that genomic mating significantly improved the performances of progeny across different traits compared with random mating, such as the feed conversion rate, days from 30 to 120 kg and eye muscle area could be improved by -0.12, -4.64 d and 2.65 cm2, respectively, which were consistent with the real experimental validations. Overall, our findings indicated that genomic mating is an effective strategy to improve the performances of progeny by maximizing their total genetic merit with consideration of both additive and dominant effects. Also, a herd of boars from a richer genetic source will increase the effectiveness of genomic mating further.


Assuntos
Comunicação Celular , Genômica , Suínos/genética , Animais , Feminino , Masculino , Cruzamentos Genéticos , Fenótipo
4.
Nucleic Acids Res ; 51(8): 3501-3512, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36809800

RESUMO

Human diseases and agricultural traits can be predicted by modeling a genetic random polygenic effect in linear mixed models. To estimate variance components and predict random effects of the model efficiently with limited computational resources has always been of primary concern, especially when it involves increasing the genotype data scale in the current genomic era. Here, we thoroughly reviewed the development history of statistical algorithms used in genetic evaluation and theoretically compared their computational complexity and applicability for different data scenarios. Most importantly, we presented a computationally efficient, functionally enriched, multi-platform and user-friendly software package named 'HIBLUP' to address the challenges that are faced currently using big genomic data. Powered by advanced algorithms, elaborate design and efficient programming, HIBLUP computed fastest while using the lowest memory in analyses, and the greater the number of individuals that are genotyped, the greater the computational benefits from HIBLUP. We also demonstrated that HIBLUP is the only tool which can accomplish the analyses for a UK Biobank-scale dataset within 1 h using the proposed efficient 'HE + PCG' strategy. It is foreseeable that HIBLUP will facilitate genetic research for human, plants and animals. The HIBLUP software and user manual can be accessed freely at https://www.hiblup.com.


Both human diseases and agricultural traits can be predicted by incorporating phenotypic observations and a relationship matrix among individuals in a linear mixed model. Due to the great demand for processing massive data of genotyped individuals, the existing algorithms that require several repetitions of inverse computing on increasingly big dense matrices (e.g. the relationship matrix and the coefficient matrix of mixed model equations) have encountered a bottleneck. Here, we presented a software tool named 'HIBLUP' to address the challenges. Powered by our advanced algorithms (e.g. HE + PCG), elaborate design and efficient programming, HIBLUP can successfully avoid the inverse computing for any big matrix and compute fastest under the lowest memory, which makes it very promising for genetic evaluation using big genomic data.


Assuntos
Genômica , Modelos Genéticos , Animais , Humanos , Algoritmos , Genoma , Genótipo , Modelos Lineares
5.
Nucleic Acids Res ; 51(D1): D1312-D1324, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36300629

RESUMO

With the exponential growth of multi-omics data, its integration and utilization have brought unprecedented opportunities for the interpretation of gene regulation mechanisms and the comprehensive analyses of biological systems. IAnimal (https://ianimal.pro/), a cross-species, multi-omics knowledgebase, was developed to improve the utilization of massive public data and simplify the integration of multi-omics information to mine the genetic mechanisms of objective traits. Currently, IAnimal provides 61 191 individual omics data of genome (WGS), transcriptome (RNA-Seq), epigenome (ChIP-Seq, ATAC-Seq) and genome annotation information for 21 species, such as mice, pigs, cattle, chickens, and macaques. The scale of its total clean data has reached 846.46 TB. To better understand the biological significance of omics information, a deep learning model for IAnimal was built based on BioBERT and AutoNER to mine 'gene' and 'trait' entities from 2 794 237 abstracts, which has practical significance for comprehending how each omics layer regulates genes to affect traits. By means of user-friendly web interfaces, flexible data application programming interfaces, and abundant functional modules, IAnimal enables users to easily query, mine, and visualize characteristics in various omics, and to infer how genes play biological roles under the influence of various omics layers.


Assuntos
Bases de Dados Genéticas , Animais , Regulação da Expressão Gênica , Genoma , Bases de Conhecimento , Software , Multiômica
6.
Gastric Cancer ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963593

RESUMO

Antibody-drug conjugates (ADCs) represent a crucial component of targeted therapies in gastric cancer, potentially altering traditional treatment paradigms. Many ADCs have entered rigorous clinical trials based on biological theories and preclinical experiments. Modality trials have also been conducted in combination with monoclonal antibody therapies, chemotherapies, immunotherapies, and other treatments to enhance the efficacy of drug coordination effects. However, ADCs exhibit limitations in treating gastric cancer, including resistance triggered by their structure or other factors. Ongoing intensive researches and preclinical experiments are yielding improvements, while enhancements in drug development processes and concomitant diagnostics during the therapeutic period actively boost ADC efficacy. The optimal treatment strategy for gastric cancer patients is continually evolving. This review summarizes the clinical progress of ADCs in treating gastric cancer, analyzes the mechanisms of ADC combination therapies, discusses resistance patterns, and offers a promising outlook for future applications in ADC drug development and companion diagnostics.

7.
Macromol Rapid Commun ; 45(8): e2300683, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38237945

RESUMO

Wound healing in movable parts, including the joints and neck, remains a critical challenge due to frequent motions and poor flexibility of dressings, which may lead to mismatching of mechanical properties and poor fitting between dressings and wounds; thus, increasing the risk of bacterial infection. This study proposes a sprayable zwitterionic antibacterial hydrogel with outstanding flexibility and desirable adhesion. This hydrogel precursor is fabricated by combining zwitterionic sulfobetaine methacrylate (SBMA) with poly(sulfobetaine methacrylate-co-dopamine methacrylamide)-modified silver nanoparticles (PSBDA@AgNPs) through robust electrostatic interactions. About 150 s of exposure to UV light, the SBMA monomer polymerizes to form PSB chains entangled with PSBDA@AgNPs, transformed into a stable and adhesion PSB-PSB@Ag hydrogel at the wound site. The resulting hydrogel has adhesive strength (15-38 kPa), large tensile strain (>400%), suitable shape adaptation, and excellent mechanical resilience. Moreover, the hydrogel displays pH-responsive behavior; the acidic microenvironment at the infected wound sites prompts the hydrogel to rapidly release AgNPs and kill bacteria. Further, the healing effect of the hydrogel is demonstrated on the rat neck skin wound, showing improved wound closing rate due to reduced inflammation and enhanced angiogenesis. Overall, the sprayable zwitterionic antibacterial hydrogel has significant potential to promote joint skin wound healing.


Assuntos
Antibacterianos , Hidrogéis , Nanopartículas Metálicas , Metacrilatos , Prata , Cicatrização , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Prata/química , Prata/farmacologia , Ratos , Nanopartículas Metálicas/química , Metacrilatos/química , Metacrilatos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana
8.
Anim Genet ; 55(4): 664-669, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38830632

RESUMO

The primary purpose of genetic improvement in lean pig breeds is to enhance production performance. Owing to their similar breeding directions, Duroc and Pietrain pigs are ideal models for investigating the phenotypic convergence underlying artificial selection. However, most important economic traits are controlled by a polygenic basis, so traditional strategies for detecting selection signatures may not fully reveal the genetic basis of complex traits. The pathway-based gene network analysis method utilizes each pathway as a unit, overcoming the limitations of traditional strategies for detecting selection signatures by revealing the selection of complex biological processes. Here, we utilized 13 122 398 high-quality SNPs from whole-genome sequencing data of 48 Pietrain pigs, 156 Duroc pigs and 36 European wild boars to detect selective signatures. After calculating FST and iHS scores, we integrated the pathway information and utilized the r/bioconductor graphite and signet packages to construct gene networks, identify subnets and uncover candidate genes underlying selection. Using the traditional strategy, a total of 47 genomic regions exhibiting parallel selection were identified. The enriched genes, including INO80, FZR1, LEPR and FAF1, may be associated with reproduction, fat deposition and skeletal development. Using the pathway-based selection signatures detection method, we identified two significant biological pathways and eight potential candidate genes underlying parallel selection, such as VTN, FN1 and ITGAV. This study presents a novel strategy for investigating the genetic basis of complex traits and elucidating the phenotypic convergence underlying artificial selection, by integrating traditional selection signature methods with pathway-based gene network analysis.


Assuntos
Fenótipo , Polimorfismo de Nucleotídeo Único , Seleção Genética , Sus scrofa , Animais , Sus scrofa/genética , Masculino , Cruzamento , Redes Reguladoras de Genes
9.
Biomacromolecules ; 24(11): 5313-5327, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37725632

RESUMO

Developing a hemostatic sponge that can effectively control bleeding from visceral injuries while guiding in situ tissue regeneration in incompressible wounds remains a challenge. Most of the existing hemostatic sponges degrade slowly, are relatively single-functioning, and cannot cope with complex environments. Herein, a biodegradable rapidly hemostatic sponge (GPZ) was created by dual-dynamic-bond cross-linking among Zn2+, protocatechualdehyde (PA)-containing catechol and aldehyde groups, and gelatin. GPZ had a uniformly distributed interconnected pore structure with excellent fluid absorption. It could effectively absorb the oozing blood and increase the blood concentration while stimulating platelet activation and accelerating blood coagulation. Compared to commercial hemostats, GPZ treatment significantly accelerated hemostasis in the rat liver defect model (∼0.33 min, ≥50% reduction in the hemostatic time) and in the rabbit liver defect model (∼1.02 min, ≥60% reduction in the hemostatic time). Additionally, GPZ had excellent antibacterial and antioxidant properties that effectively protected the wound from infection and excessive inflammation. In the liver regeneration model, GPZ significantly increased the rate of hepatic tissue repair and promoted rapid functional recovery without complications and adverse reactions. Overall, we designed a simple and effective biodegradable rapid hemostatic sponge with good clinical translational potential for treating lethal incompressible bleeding and promoting wound healing.


Assuntos
Gelatina , Hemostáticos , Ratos , Animais , Coelhos , Gelatina/farmacologia , Hemostasia , Hemostáticos/farmacologia , Hemostáticos/química , Cicatrização , Hemorragia/tratamento farmacológico , Fígado/lesões
10.
Genet Sel Evol ; 55(1): 46, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407918

RESUMO

BACKGROUND: Genome-wide association studies (GWAS) are an effective way to explore genotype-phenotype associations in humans, animals, and plants. Various GWAS methods have been developed based on different genetic or statistical assumptions. However, no single method is optimal for all traits and, for many traits, the putative single nucleotide polymorphisms (SNPs) that are detected by the different methods do not entirely overlap due to the diversity of the genetic architecture of complex traits. Therefore, multi-tool-based GWAS strategies that combine different methods have been increasingly employed. To take this one step further, we propose an ensemble-like GWAS strategy (E-GWAS) that statistically integrates GWAS results from different single GWAS methods. RESULTS: E-GWAS was compared with various single GWAS methods using simulated phenotype traits with different genetic architectures. E-GWAS performed stably across traits with different genetic architectures and effectively controlled the number of false positive genetic variants detected without decreasing the number of true positive variants. In addition, its performance could be further improved by using a bin-merged strategy and the addition of more distinct single GWAS methods. Our results show that the numbers of true and false positive SNPs detected by the E-GWAS strategy slightly increased and decreased, respectively, with increasing bin size and when the number and the diversity of individual GWAS methods that were integrated in E-GWAS increased, the latter being more effective than the bin-merged strategy. The E-GWAS strategy was also applied to a real dataset to study backfat thickness in a pig population, and 10 candidate genes related to this trait and expressed in adipose-associated tissues were identified. CONCLUSIONS: Using both simulated and real datasets, we show that E-GWAS is a reliable and robust strategy that effectively integrates the GWAS results of different methods and reduces the number of false positive SNPs without decreasing that of true positive SNPs.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Humanos , Animais , Suínos , Estudo de Associação Genômica Ampla/métodos , Estudos de Associação Genética , Fenótipo
11.
Pacing Clin Electrophysiol ; 46(1): 34-38, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35962617

RESUMO

BACKGROUND: Ablation of the vein of Marshall (VOM) by dehydrated ethanol (DE) is an important method for completely blocking the mitral isthmus (MI). Before DE ablation of the VOM, Marshall angiography should be performed so that the contrast medium is inevitably exposed to DE. METHOD: We present a case of DE ablation of the VOM. When iodixanol was exposed to DE, some floccule embolized the lumen of the over-the-wire (OTW) balloon dilatation catheter and led to the impossibility of DE ablation. Then, we performed in vitro experiments: iodixanol, not iomeprol, produced many stable white floccules when it encountered DE. CONCLUSION: Iodixanol is not an appropriate contrast for DE ablation of the VOM. However, if there is no other alternative contrast, the following methods might be used to address the problem: ⑴ diluted iodixanol (iodixanol:normal saline 1:1) could be used for VOM ablation; or ⑵ the lumen of the OTW could be flushed by NS after VOM angiography, and then DE injection could be performed.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Humanos , Fibrilação Atrial/cirurgia , Vasos Coronários/cirurgia , Ablação por Cateter/métodos , Etanol
12.
Herz ; 48(6): 470-473, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37566118

RESUMO

A 71 year old male patient who experienced acute myocardial infarction (AMI) 4 years ago and had a history of polycythemia vera and thrombocythemia was admitted because acute attack of chronic heart failure. Coronary angiography revealed an unusual filling defect in the middle segment of the left anterior descending (LAD) coronary artery and IVUS showed it is a HLS which is different from dissection or woven coronary artery. We review the recent literature of HLS in this article and further investigations are warranted for the optimal management of HLS.


Assuntos
Policitemia Vera , Trombocitose , Trombose , Masculino , Humanos , Idoso , Vasos Coronários/diagnóstico por imagem , Policitemia Vera/complicações , Policitemia Vera/diagnóstico por imagem , Angiografia Coronária , Ultrassonografia de Intervenção
13.
Ecotoxicol Environ Saf ; 251: 114550, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36652743

RESUMO

Potentially toxic element (PTE) pollution of urban soils has become the focus of social concern, but the differences of the sources, pollution levels and source-oriented human health risks (HHR) of PTE in urban soils among different urban intensity areas is rarely known. This study explored a comprehensive scheme that combined positive matrix factorization model and source-oriented assessment to quantitatively assess the priority pollution sources and HHR in urban soils from areas with different urbanization intensities. All the average values for PTE concentrations, except for Cr, were higher than their corresponding background values. The contributions made by the four sources (atmospheric deposition, agricultural activities, traffic activities, and natural sources) were relatively similar (22.29-29.89%) in the low urbanization intensity (LUI) area, whereas traffic activities and atmospheric deposition made the greatest contributions in the medium urbanization intensity (MUI) (29.12%) and the high urbanization intensity (HUI) (38.97%) areas, respectively. The geo-accumulation index results revealed that Cd was the most polluting element and the HUI area had the highest pollution levels. The content-oriented assessment of HHR demonstrated that the non-carcinogenic risks were acceptable, but the carcinogenic risks were unacceptable. According to the source-oriented HHR assessment, among the anthropogenic activities, atmospheric deposition contributed the most to carcinogenic risk of children in all areas, and atmospheric deposition, traffic activities and agricultural activities contributed the most to the carcinogenic risk of adults in HUI, MUI and LUI, respectively. This suggest that control measures need to be tailored to the appropriate urbanization intensity to effectively curb PTE pollution caused by anthropogenic activities.


Assuntos
Metais Pesados , Poluentes do Solo , Adulto , Criança , Humanos , Monitoramento Ambiental , Urbanização , Metais Pesados/análise , Poluentes do Solo/análise , Solo , Carcinógenos/análise , Medição de Risco , China
14.
BMC Biol ; 20(1): 136, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35681201

RESUMO

BACKGROUND: Gene expression programs are intimately linked to the interplay of active cis regulatory elements mediated by chromatin contacts and associated RNAs. Genome-wide association studies (GWAS) have identified many variants in these regulatory elements that can contribute to phenotypic diversity. However, the functional interpretation of these variants remains nontrivial due to the lack of chromatin contact information or limited contact resolution. Furthermore, the distribution and role of chromatin-associated RNAs in gene expression and chromatin conformation remain poorly understood. To address this, we first present a comprehensive interaction map of nuclear dynamics of 3D chromatin-chromatin interactions (H3K27ac BL-HiChIP) and RNA-chromatin interactions (GRID-seq) to reveal genomic variants that contribute to complex skeletal muscle traits. RESULTS: In a genome-wide scan, we provide systematic fine mapping and gene prioritization from GWAS leading signals that underlie phenotypic variability of growth rate, meat quality, and carcass performance. A set of candidate functional variants and 54 target genes previously not detected were identified, with 71% of these candidate functional variants choosing to skip over their nearest gene to regulate the target gene in a long-range manner. The effects of three functional variants regulating KLF6 (related to days to 100 kg), MXRA8 (related to lean meat percentage), and TAF11 (related to loin muscle depth) were observed in two pig populations. Moreover, we find that this multi-omics interaction map consists of functional communities that are enriched in specific biological functions, and GWAS target genes can serve as core genes for exploring peripheral trait-relevant genes. CONCLUSIONS: Our results provide a valuable resource of candidate functional variants for complex skeletal muscle-related traits and establish an integrated approach to complement existing 3D genomics by exploiting RNA-chromatin and chromatin-chromatin interactions for future association studies.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Animais , Cromatina/genética , Músculo Esquelético , Polimorfismo de Nucleotídeo Único , RNA , Suínos
15.
Genomics ; 114(2): 110276, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35104610

RESUMO

Although large-scale and accurate identification of cis-regulatory elements on pig protein-coding and long non-coding genes has been reported, similar study on pig miRNAs is still lacking. Here, we systematically characterized the cis-regulatory elements of pig miRNAs in muscle and fat by adopting miRNAomes, ChIP-seq, ATAC-seq, RNA-seq and Hi-C data. In total, the cis-regulatory elements of 257 (85.95%) expressed miRNAs including 226 known and 31 novel miRNAs were identified. Especially, the miRNAs associated with super-enhancers, active promoters, and "A" compartment were significantly higher than those associated by typical enhancers, prompters without H3K27ac, and "B" compartment, respectively. The tissue specific transcription factors were the primary determination of core miRNA expression pattern in muscle and fat. Moreover, the miRNA promoters are more evolutionarily conserved than miRNA enhancers, like other type genes. Our study adds additional important information to existing pig epigenetic data and provides essential resource for future in-depth investigation of pig epigenetics.


Assuntos
Epigenômica , MicroRNAs , Animais , Sequenciamento de Cromatina por Imunoprecipitação , MicroRNAs/genética , Músculos , Sequências Reguladoras de Ácido Nucleico , Suínos/genética
16.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36675257

RESUMO

Peri-implantitis is a major factor affecting implant prognosis, and the specific anatomy of the peri-implant area makes it more vulnerable to the local hypoxic environment caused by inflammation. N6-methyladenosine (m6A) plays a vital role in a multitude of biological processes, and its main "reader" Yth m6A RNA-binding protein 1 (YTHDF1) is suggested to affect osteogenic differentiation. However, the mechanism underlying the effect of YTHDF1 on osteogenic differentiation under hypoxic conditions remains unclear. To address this question, we examined the expression of YTHDF1 under hypoxia and observed that hypoxia suppressed osteogenic differentiation but promoted the expression of YTHDF1. Then we knocked down YTHDF1 and found decreased levels of osteogenic-related markers, alkaline phosphatase (ALP) activity, and alizarin red staining (ARS) under normoxia or hypoxia treatment. Bioinformatics analysis identified Thrombospondin-1 (THBS1) might be a downstream factor of YTHDF1. The results revealed that YTHDF1 enhanced the stability of THBS1 mRNA, and immunofluorescence assays found co-localization with YTHDF1 and THBS1 under hypoxia. Loss of function studies showed knocking down YTHDF1 or THBS1 exacerbated the osteogenic inhibition caused by hypoxia. All data imply that hypoxia suppresses osteogenic differentiation and promotes the expression of YTHDF1, which translationally regulates THBS1 in an m6A-dependent manner, potentially counteracting hypoxia-induced osteogenic inhibition through the YTHDF1/THBS1 pathway. The results of this study reveal for the first time the molecular mechanism of the regulation of osteogenic differentiation by YTHDF1 under hypoxia and suggest that YTHDF1, together with its downstream factor THBS1, may be critical targets to counteract osteogenic inhibition under hypoxic conditions, providing promising therapeutic strategy for the hypoxia-induced bone loss in peri-implantitis.


Assuntos
Osteogênese , Peri-Implantite , Humanos , Osteogênese/genética , Peri-Implantite/metabolismo , Diferenciação Celular , Hipóxia/genética , Hipóxia/metabolismo , Trombospondinas/metabolismo , Osteoblastos/metabolismo
17.
Int J Mol Sci ; 24(5)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36902425

RESUMO

Skeletal muscle, as a regenerative organization, plays a vital role in physiological characteristics and homeostasis. However, the regulation mechanism of skeletal muscle regeneration is not entirely clear. miRNAs, as one of the regulatory factors, exert profound effects on regulating skeletal muscle regeneration and myogenesis. This study aimed to discover the regulatory function of important miRNA miR-200c-5p in skeletal muscle regeneration. In our study, miR-200c-5p increased at the early stage and peaked at first day during mouse skeletal muscle regeneration, which was also highly expressed in skeletal muscle of mouse tissue profile. Further, overexpression of miR-200c-5p promoted migration and inhibited differentiation of C2C12 myoblast, whereas inhibition of miR-200c-5p had the opposite effect. Bioinformatic analysis predicted that Adamts5 has potential binding sites for miR-200c-5p at 3'UTR region. Dual-luciferase and RIP assays further proved that Adamts5 is a target gene of miR-200c-5p. The expression patterns of miR-200c-5p and Adamts5 were opposite during the skeletal muscle regeneration. Moreover, miR-200c-5p can rescue the effects of Adamts5 in the C2C12 myoblast. In conclusion, miR-200c-5p might play a considerable function during skeletal muscle regeneration and myogenesis. These findings will provide a promising gene for promoting muscle health and candidate therapeutic target for skeletal muscle repair.


Assuntos
Proteína ADAMTS5 , MicroRNAs , Mioblastos , Animais , Camundongos , Proteína ADAMTS5/metabolismo , Diferenciação Celular , Linhagem Celular , Proliferação de Células/genética , MicroRNAs/genética , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Mioblastos/metabolismo
18.
Int J Mol Sci ; 24(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37686137

RESUMO

The Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus that causes viral encephalitis in humans, pigs and other mammals across Asia and the Western Pacific. Genetic screening tools such as CRISPR screening, DNA sequencing and RNA interference have greatly improved our understanding of JEV replication and its potential antiviral approaches. However, information on exon and intron mutations associated with JEV replication is still scanty. CRISPR-Cas9-mediated cytosine base editing can efficiently generate C: G-to-T: A conversion in the genome of living cells. One intriguing application of base editing is to screen pivotal variants for gene function that is yet to be achieved in pigs. Here, we illustrate that CRISPR-Cas9-mediated cytosine base editor, known as AncBE4max, can be used for the functional analysis of calreticulin (CALR) variants. We conducted a CRISPR-Cas9-mediated cytosine base editing screen using 457 single guide RNAs (sgRNAs) against all exons and introns of CALR to identify loss-of-function variants involved in JEV replication. We unexpectedly uncovered that two enriched sgRNAs targeted the same site in intron-2 of the CALR gene. We found that mutating four consecutive G bases in the intron-2 of the CALR gene to four A bases significantly inhibited JEV replication. Thus, we established a CRISPR-Cas9-mediated cytosine-base-editing point mutation screening technique in pigs. Our results suggest that CRISPR-mediated base editing is a powerful tool for identifying the antiviral functions of variants in the coding and noncoding regions of the CALR gene.


Assuntos
Calreticulina , Vírus da Encefalite Japonesa (Espécie) , Vírus da Encefalite Japonesa (Subgrupo) , Animais , Humanos , Antivirais , Calreticulina/genética , Sistemas CRISPR-Cas/genética , Citosina , Vírus da Encefalite Japonesa (Espécie)/genética , Edição de Genes , Íntrons/genética , Mamíferos , Mutação , RNA Guia de Sistemas CRISPR-Cas , Suínos
19.
Neural Plast ; 2022: 5379876, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432523

RESUMO

Stroke is one of the leading causes of death and disability worldwide. Evidence shows that ischemic stroke (IS) accounts for nearly 80 percent of all strokes and that the etiology, risk factors, and prognosis of this disease differ by gender. Female patients may bear a greater burden than male patients. The immune system may play an important role in the pathophysiology of females with IS. Therefore, it is critical to investigate the key biomarkers and immune infiltration of female IS patients to develop effective treatment methods. Herein, we used weighted gene co-expression network analysis (WGCNA) to determine the key modules and core genes in female IS patients using the GSE22255, GSE37587, and GSE16561 datasets from the GEO database. Subsequently, we performed functional enrichment analysis and built a protein-protein interaction (PPI) network. Ten genes were selected as the true central genes for further investigation. After that, we explored the specific molecular and biological functions of these hub genes to gain a better understanding of the underlying pathogenesis of female IS patients. Moreover, the "Cell type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT)" was used to examine the distribution pattern of immune subtypes in female patients with IS and normal controls, revealing a new potential target for clinical treatment of the disease.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Biomarcadores , Feminino , Redes Reguladoras de Genes , Humanos , AVC Isquêmico/genética , Masculino , Prognóstico , Mapas de Interação de Proteínas , Acidente Vascular Cerebral/genética
20.
J Cell Mol Med ; 25(5): 2517-2529, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33486894

RESUMO

Pathological cardiac hypertrophy represents a leading cause of morbidity and mortality worldwide. Liver kinase B1 interacting protein 1 (LKB1IP) was identified as the binding protein of tumour suppressor LKB1. However, the role of LKB1IP in the development of pathological cardiac hypertrophy has not been explored. The aim of this study was to investigate the function of LKB1IP in cardiac hypertrophy in response to hypertrophic stimuli. We investigated the cardiac level of LKB1IP in samples from patients with heart failure and mice with cardiac hypertrophy induced by isoproterenol (ISO) or transverse aortic constriction (TAC). LKB1IP knockout mice were generated and challenged with ISO injection or TAC surgery. Cardiac function, hypertrophy and fibrosis were then examined. LKB1IP expression was significantly up-regulated on hypertrophic stimuli in both human and mouse cardiac samples. LKB1IP knockout markedly protected mouse hearts against ISO- or TAC-induced cardiac hypertrophy and fibrosis. LKB1IP overexpression aggravated ISO-induced cardiomyocyte hypertrophy, and its inhibition attenuated hypertrophy in vitro. Mechanistically, LKB1IP activated Akt signalling by directly targeting PTEN and then inhibiting its phosphatase activity. In conclusion, LKB1IP may be a potential target for pathological cardiac hypertrophy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cardiomegalia/etiologia , Cardiomegalia/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Animais , Cardiomegalia/diagnóstico por imagem , Cardiomegalia/patologia , Células Cultivadas , Modelos Animais de Doenças , Ecocardiografia , Expressão Gênica , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Fosforilação , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA