Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Chemistry ; 30(34): e202303661, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630080

RESUMO

Lanthanide-doped scintillators have the ability to convert the absorbed X-ray irradiation into ultraviolet (UV), visible (Vis), or near-infrared (NIR) light. Lanthanide-doped scintillators with excellent persistent luminescence (PersL) are emerging as a new class of PersL materials recently. They have attracted great attention due to their unique "self-luminescence" characteristic and potential applications. In this review, we comb through and focus on current developments of lanthanide-doped persistent luminescent scintillators (PersLSs), including their PersL mechanism, synthetic methods, tuning of PersL properties (e. g. emission wavelength, intensity, and duration time), as well as their promising applications (e. g. information storage, encryption, anti-counterfeiting, bio-imaging, and photodynamic therapy). We hope this review will provide valuable guidance for the future development of PersLSs.

2.
Virol J ; 21(1): 167, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080728

RESUMO

Infertility affects approximately one-sixth of couples globally, with the incidence of male infertility steadily increasing. However, our understanding of the impact of viral infections on fertility remains limited. This review consolidates findings from previous studies, outlining 40 viruses identified in human semen and summarizing their key characteristics, modes of transmission, and their effects on both the reproductive and endocrine systems. Furthermore, it elucidates potential pathogenic mechanisms and treatment prospects of viruses strongly associated with male infertility. This synthesis will enhance our comprehension of how viral infections influence male reproductive health, offering valuable insights for future research as well as the diagnosis and treatment of infectious infertility.


Assuntos
Infertilidade Masculina , Sêmen , Viroses , Humanos , Masculino , Sêmen/virologia , Infertilidade Masculina/virologia , Viroses/virologia , Vírus/classificação , Vírus/isolamento & purificação , Vírus/genética
3.
Bioorg Med Chem ; 111: 117869, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39126834

RESUMO

Recently, the sortilin receptor (SORT1) was found to be preferentially over-expressed on the surface of many cancer cells, which makes SORT1 a novel anticancer target. The SORT1 binding proprietary peptide TH19P01 could achieve the SORT1-mediated cancer cell binding and subsequent internalization. Inspired by the peptide-drug conjugate (PDC) strategy, the TH19P01-camptothecin (CPT) conjugates were designed, efficiently synthesized, and evaluated for their anticancer potential in this study. The water solubility, in vitro anticancer activity, time-kill kinetics, cellular uptake, anti-migration activity, and hemolysis effects were systematically estimated. Besides, in order to monitor the release of CPT from conjugates in real-time, the CPT/Dnp-based "turn on" hybrid peptide was designed, which indicted that CPT could be sustainably released from the hybrid peptide in both human serum and cancer cellular environments. Strikingly, compared with free CPT, the water solubility, cellular uptake, and selectivity towards cancer cells of hybrid peptide LYJ-2 have all been significantly enhanced. Moreover, unlike free CPT or TH19P01, LYJ-2 exhibited selective anti-proliferative and anti-migration effects against SORT1-positive MDA-MB-231 cells. Collectively, this study not only established efficient strategies to improve the solubility and anticancer potential of chemotherapeutic agent CPT, but also provided important references for the future development of TH19P01 based PDCs targeting SORT1.

4.
Mol Biol Rep ; 51(1): 492, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578368

RESUMO

BACKGROUND: Lactoferrin (LF) is an iron-binding multifunctional cationic glycoprotein. Previous studies have demonstrated that LF may be a potential drug for treating acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). In this study, we explored the anti-inflammatory effect and mechanism of bovine lactoferrin (bLF) in ALI using the RNA sequencing (RNA-seq) technology and transcriptome analysis. METHODS AND RESULTS: Based on the differentially expressed genes (DEGs) obtained from RNA-seq of the Lung from mouse model, the bioinformatics workflow was implemented using the BGISEQ-500 platform. The protein-protein interaction (PPI) network was obtained using STRING, and the hub gene was screened using Cytoscape. To verify the results of transcriptome analysis, the effects of bLF on Lipopolysaccharide (LPS)-induced BEAS-2B cells and its anti-reactive oxygen species (ROS), anti-inflammatory, and antiapoptotic effects were studied via Cell Counting Kit-8 (CCK-8) test, active oxygen detection test, ELISA, and western blot assay. Transcriptome analysis revealed that two hub gene modules of DEGs were screened via PPI analysis using the STRING and MCODE plug-ins of Cytoscape. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that these core modules are enriched in the PPAR (peroxisome proliferator-activated receptor) and AMPK (AMP-activated protein kinase) signaling pathways. Through cell experiments, our study shows that bLF can inhibit ROS, inflammatory reaction, and LPS-induced BEAS-2B cell apoptosis, which are significantly antagonized by the PPAR-γ inhibitor GW9662. CONCLUSION: This study has suggested that the PPAR-γ pathway is the critical target of bLF in anti-inflammatory reactions and apoptosis of ALI, which provides a direction for further research.


Assuntos
Lesão Pulmonar Aguda , Lactoferrina , Animais , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/genética , Anti-Inflamatórios/farmacologia , Apoptose , Lactoferrina/farmacologia , Lipopolissacarídeos , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
Phys Chem Chem Phys ; 26(9): 7794-7807, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38375591

RESUMO

The electrochemical corrosion of Ti surfaces is significantly affected by O adsorption, yet the underlying mechanisms remain unexplored. Herein, density functional theory calculations are employed to examine the adsorption energies, structural properties, electronic structures, and thermodynamic stability of atomic O on Ti(0001) surfaces during initial oxidation. Additionally, the impact of O adsorption on Ti dissolution is assessed by introducing a Ti vacancy on the Ti(0001) surface. The passivation of the Ti(0001) surface is predominantly ascribed to the robust adsorption of O atoms. The thermodynamic results reveal that bulk TiO2 easily forms at 300 K, which explains the spontaneous passivation of the Ti(0001) surface. The formation of an O monolayer on the Ti(0001) surface increases the work function (Φ), positively shifting the equilibrium potential and reducing the corrosion rate. The surface vacancy formation energy of Ti on the Ti(0001)/O surface surpasses that on the clean surface. The electrode potential shift for a Ti atom dissolving from the Ti(0001)/O surface is positive, indicating that oxidation impedes the formation of Ti vacancies, rendering Ti atoms less soluble. This study enhances our comprehension of the corrosion mechanism in Ti metal.

6.
J Phycol ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39129585

RESUMO

Haematococcus pluvialis has been used to produce the ketocarotenoid antioxidant, astaxanthin. Currently, heterotrophic cultivation of H. pluvialis is limited by slow growth rates. This work aimed to address this challenge by exploring the mechanisms of acetate metabolism in Haematococcus. Chemical mutagenesis and screening identified H. pluvialis strain KREMS 23D-3 that achieved up to a 34.9% higher cell density than the wild type when grown heterotrophically on acetate. An integrative proteomics and phosphoproteomics approach was employed to quantify 4955 proteins and 5099 phosphorylation sites from 2505 phosphoproteins in the wild-type and mutant strains of H. pluvialis. Among them, 12 proteins were significantly upregulated and 22 significantly downregulated in the mutant while phosphoproteomic analysis identified 143 significantly upregulated phosphorylation sites on 106 proteins and 130 downregulated phosphorylation sites on 114 proteins. Upregulation of anaphase-promoting complex phosphoproteins and downregulation of a putative cell cycle division 20 phosphoprotein in the mutant suggests rapid mitotic progression, coinciding with higher cell division rates. Upregulated coproporphyrinogen oxidase and phosphorylated magnesium chelatase in the mutant demonstrated altered nitrogen partitioning toward chlorophyll biosynthesis. The large proportion of differentially expressed phosphoproteins suggests phosphorylation is a key regulator for protein expression and activity in Haematococcus. Taken together, this study reveals the regulation of interrelated acetate metabolic pathways in H. pluvialis and provides protein targets that may guide future strain engineering work.

7.
Plant J ; 111(4): 1069-1080, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35727866

RESUMO

Genetic compensation has been proposed to explain phenotypic differences between gene knockouts and knockdowns in several metazoan and plant model systems. With the rapid development of reverse genetic tools such as CRISPR/Cas9 and RNAi in microalgae, it is increasingly important to assess whether genetic compensation affects the phenotype of engineered algal mutants. While exploring triacylglycerol (TAG) biosynthesis pathways in the model alga Chlamydomonas reinhardtii, it was discovered that knockout of certain genes catalyzing rate-limiting steps of TAG biosynthesis, type-2 diacylglycerol acyltransferase genes (DGTTs), triggered genetic compensation under abiotic stress conditions. Genetic compensation of a DGTT1 null mutation by a related PDAT gene was observed regardless of the strain background or mutagenesis approach, for example, CRISPR/Cas 9 or insertional mutagenesis. However, no compensation was found in the PDAT knockout mutant. The effect of PDAT knockout was evaluated in a Δvtc1 mutant, in which PDAT was upregulated under stress, resulting in a 90% increase in TAG content. Knockout of PDAT in the Δvtc1 background induced a 12.8-fold upregulation of DGTT1 and a 272.3% increase in TAG content in Δvtc1/pdat1 cells, while remaining viable. These data suggest that genetic compensation contributes to the genetic robustness of microalgal TAG biosynthetic pathways, maintaining lipid and redox homeostasis in the knockout mutants under abiotic stress. This work demonstrates examples of genetic compensation in microalgae, implies the physiological relevance of genetic compensation in TAG biosynthesis under stress, and provides guidance for future genetic engineering and mutant characterization efforts.


Assuntos
Chlamydomonas reinhardtii , Microalgas , Animais , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Diacilglicerol O-Aciltransferase/genética , Microalgas/genética , Microalgas/metabolismo , Plantas/metabolismo , Triglicerídeos/metabolismo
8.
Plant Physiol ; 189(3): 1345-1362, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35385114

RESUMO

Triacylglycerols (TAGs) are the main storage lipids in photosynthetic organisms under stress. In the oleaginous alga Nannochloropsis oceanica, while multiple acyl CoA:diacylglycerol (DAG) acyltransferases (NoDGATs) are involved in TAG production, the role of the unique phospholipid:DAG acyltransferase (NoPDAT) remains unknown. Here, we performed a functional complementation assay in TAG-deficient yeast (Saccharomyces cerevisiae) and an in vitro assay to probe the acyltransferase activity of NoPDAT. Subcellular localization, overexpression, and knockdown (KD) experiments were also conducted to elucidate the role of NoPDAT in N. oceanica. NoPDAT, residing at the outermost plastid membrane, does not phylogenetically fall into the clades of algae or plants and uses phosphatidylethanolamine (PE) and phosphatidylglycerol with 16:0, 16:1, and 18:1 at position sn-2 as acyl-donors in vivo. NoPDAT KD, not triggering any compensatory mechanism via DGATs, led to an ∼30% decrease of TAG content, accompanied by a vast accumulation of PEs rich in 16:0, 16:1, and 18:1 fatty acids (referred to as "LU-PE") that was positively associated with CO2 availability. We conclude that the NoPDAT pathway is parallel to and independent of the NoDGAT pathway for oil production. LU-PE can serve as an alternative carbon sink for photosynthetically assimilated carbon in N. oceanica when PDAT-mediated TAG biosynthesis is compromised or under stress in the presence of high CO2 levels.


Assuntos
Aciltransferases , Microalgas , Fosfatidiletanolaminas , Aciltransferases/genética , Aciltransferases/metabolismo , Dióxido de Carbono/metabolismo , Sequestro de Carbono/genética , Sequestro de Carbono/fisiologia , Diacilglicerol O-Aciltransferase/metabolismo , Microalgas/genética , Microalgas/metabolismo , Fosfatidiletanolaminas/genética , Fosfatidiletanolaminas/metabolismo , Plantas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Triglicerídeos/genética , Triglicerídeos/metabolismo
9.
Chem Eng J ; 468: 143616, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37251501

RESUMO

Förster or fluorescence resonance energy transfer (FRET) enables to probe biomolecular interactions, thus playing a vital role in bioassays. However, conventional FRET platforms suffer from limited sensitivity due to the low FRET efficiency and poor anti-interference of existing FRET pairs. Here we report a NIR-II (1000-1700 nm) FRET platform with extremely high FRET efficiency and exceptional anti-interference capability. This NIR-II FRET platform is established based on a pair of lanthanides downshifting nanoparticles (DSNPs) by employing Nd3+ doped DSNPs as an energy donor and Yb3+ doped DSNPs as an energy acceptor. The maximum FRET efficiency of this well-engineered NIR-II FRET platform reaches up to 92.2%, which is much higher than most commonly used ones. Owing to the all-NIR advantage (λex = 808 nm, λem = 1064 nm), this highly efficient NIR-II FRET platform exhibits extraordinary anti-interference in whole blood, and thus enabling background-free homogeneous detection of SARS-CoV-2 neutralizing antibodies in clinical whole blood sample with high sensitivity (limit of detection = 0.5 µg/mL) and specificity. This work opens up new opportunities for realizing highly sensitive detection of various biomarkers in biological samples with severe background interference.

10.
Chem Soc Rev ; 51(15): 6291-6306, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35856093

RESUMO

Deuterated chemicals are becoming irreplaceable in pharmaceutical engineering, material science and synthetic chemistry. Many excellent reviews have discussed acid/base-dependent or metal-catalyzed deuteration reactions, but radical deuterations have been discussed less. With the development of radical chemistry, there has been a rapid growth in radical deuterium-labelling technology. Diverse mild, cheap and efficient strategies for deuterium atom installation have been reported, and this review summarizes the recent achievements of radical deuteration classified by the reaction types.


Assuntos
Deutério
11.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36982536

RESUMO

CircRNAs are newly identified special endogenous RNA molecules that covalently close a loop by back-splicing with pre-mRNA. In the cytoplasm, circRNAs would act as molecular sponges to bind with specific miRNA to promote the expression of target genes. However, knowledge of circRNA functional alternation in skeletal myogenesis is still in its infancy. In this study, we identified a circRNA-miRNA-mRNA interaction network in which the axis may be implicated in the progression of chicken primary myoblasts' (CPMs) myogenesis by multi-omics (i.e., circRNA-seq and ribo-seq). In total, 314 circRNA-miRNA-mRNA regulatory axes containing 66 circRNAs, 70 miRNAs, and 24 mRNAs that may be relevant to myogenesis were collected. With these, the circPLXNA2-gga-miR-12207-5P-MDM4 axis aroused our research interest. The circPLXNA2 is highly differentially expressed during differentiation versus proliferation. It was demonstrated that circPLXNA2 inhibited the process of apoptosis while at the same time stimulating cell proliferation. Furthermore, we demonstrated that circPLXNA2 could inhibit the repression of gga-miR-12207-5p to MDM4 by directing binding to gga-miR-12207-5p, thereby restoring MDM4 expression. In conclusion, circPLXNA2 could function as a competing endogenous RNA (ceRNA) to recover the function of MDM4 by directing binding to gga-miR-12207-5p, thereby regulating the myogenesis.


Assuntos
MicroRNAs , RNA Circular , RNA Circular/genética , RNA Circular/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , Mioblastos/metabolismo , Apoptose/genética , Proliferação de Células/genética
12.
J Environ Manage ; 326(Pt A): 116594, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36347218

RESUMO

Biochar may be potentially used as a rhizobial carrier due to its specific chemical compositions and surface properties, but the relationship between these properties and rhizobial survival rate is largely unknown. Here, we analysed the physicochemical characteristics and carrier potential of six types of biochars made from various feedstocks at 600 °C using slow pyrolysis method, and results were compared with conventional carrier material peat. Liquid suspension of Bradyrhziobium japonicum CB1809 was used to inoculate all the carrier materials. Shelf life and survival rate was determined via colony forming unit (CFU) method for up to 90 days under two storage temperature conditions (28 °C and 38 °C). The determined physicochemical characteristics of biochars were categorized into major elements, trace elements, relative ratios, surface morphology, functional groups, and key basic properties; and their interaction to shelf life was analysed using hypothesis-oriented structure equation modelling (path analysis). Results revealed that different types of biochars had different capacity to impact on shelf life due to their different physicochemical properties. Among all biochars pine wood BC was the most suitable carrier with the highest counts of 10.11 Log 10 CFU g-1 and 9.76 Log 10 CFU g-1 at the end of 90 days at 28 °C and 38 °C storage, respectively. Path analysis revealed that rhizobial shelf life was largely explained by total carbon (TC), manganese (Mn), specific surface area (SSA), pore size, CO (ketonic carbon), and O-CO (carboxyl carbon) functional groups, and all these indicators exhibited positive direct impact on shelf life. Pinewood BC showed the highest values of Mn, SSA, pore size and functional groups (CO and O-CO), contributing to its highest rhizobial shelf life and survival rate among other biochars and peat tested.


Assuntos
Rhizobium , Taxa de Sobrevida , Carvão Vegetal/química , Solo/química , Carbono/análise , Temperatura , Propriedades de Superfície
13.
Phys Rev Lett ; 128(2): 026404, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35089757

RESUMO

We uncover a new type of magic-angle phenomena when an AA-stacked graphene bilayer is twisted relative to another graphene system with band touching. In the simplest case this constitutes a trilayer system formed by an AA-stacked bilayer twisted relative to a single layer of graphene. We find multiple anisotropic Dirac cones coexisting in such twisted multilayer structures at certain angles, which we call "Dirac magic." We trace the origin of Dirac magic angles to the geometric structure of the twisted AA-bilayer Dirac cones relative to the other band-touching spectrum in the moiré reciprocal lattice. The anisotropy of the Dirac cones and a concomitant cascade of saddle points induce a series of topological Lifshitz transitions that can be tuned by the twist angle and perpendicular electric field. We discuss the possibility of direct observation of Dirac magic as well as its consequences for the correlated states of electrons in this moiré system.

14.
Plant J ; 104(6): 1736-1745, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33103271

RESUMO

Nannochloropsis species, unicellular industrial oleaginous microalgae, are model organisms for microalgal systems and synthetic biology. To facilitate community-based annotation and mining of the rapidly accumulating functional genomics resources, we have initiated an international consortium and present a comprehensive multi-omics resource database named Nannochloropsis Design and Synthesis (NanDeSyn; http://nandesyn.single-cell.cn). Via the Tripal toolkit, it features user-friendly interfaces hosting genomic resources with gene annotations and transcriptomic and proteomic data for six Nannochloropsis species, including two updated genomes of Nannochloropsis oceanica IMET1 and Nannochloropsis salina CCMP1776. Toolboxes for search, Blast, synteny view, enrichment analysis, metabolic pathway analysis, a genome browser, etc. are also included. In addition, functional validation of genes is indicated based on phenotypes of mutants and relevant bibliography. Furthermore, epigenomic resources are also incorporated, especially for sequencing of small RNAs including microRNAs and circular RNAs. Such comprehensive and integrated landscapes of Nannochloropsis genomics and epigenomics will promote and accelerate community efforts in systems and synthetic biology of these industrially important microalgae.


Assuntos
Microalgas/metabolismo , Bases de Dados como Assunto , Epigenômica , Genoma/genética , Genômica , Internet , Redes e Vias Metabólicas , Microalgas/genética , Proteômica , RNA Citoplasmático Pequeno , Biologia Sintética , Transcriptoma/genética
15.
Plant Physiol ; 183(3): 883-897, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32385091

RESUMO

The biosynthesis of astaxanthin, a high-value keto-carotenoid with broad industrial applications, remains unambiguous in algae. Here, we dissected the astaxanthin biosynthetic pathway and the coordination between astaxanthin and triacylglycerol (TAG) biosynthesis in the emerging model alga Chromochloris zofingiensis In vivo and in vitro experiments demonstrated that astaxanthin, utilizing the methylerythritol phosphate pathway-derived isopentenyl diphosphate as the building block, was synthesized from ß-carotenoid ketolase-mediated ketolation of zeaxanthin rather than ß-carotenoid hydroxylase-mediated hydroxylation of canthaxanthin, thus leading to the buildup of astaxanthin and canthaxanthin as end products in C. zofingiensis The synthesized astaxanthin, stored in TAG-filled lipid droplets, was esterified mainly with the fatty acid C18:1, which was not catalyzed by any acyltransferase previously proposed. Astaxanthin accumulated in a well-coordinated manner with TAG, supported by the coordinated up-regulation of both biosynthetic pathways at the transcriptional level. Nevertheless, astaxanthin and TAG showed no interdependence: inhibition of de novo fatty acid biosynthesis severely attenuated TAG biosynthesis but promoted the accumulation of astaxanthin, particularly in the diester form, leading to a fivefold increase in the astaxanthin/TAG ratio; however, inhibition of astaxanthin biosynthesis showed little effect on TAG accumulation. Our data suggest that an increase in astaxanthin accumulation following inhibition of de novo fatty acid biosynthesis, which is not regulated at the transcriptional level, is likely derived from the conversion of other carotenoids rather than from a shunt of carbon flux from lipid biosynthesis. Combined, these findings further our understanding of astaxanthin biosynthesis and provide a feasible strategy for promoting astaxanthin content and purity in algae.


Assuntos
Vias Biossintéticas , Clorofíceas/metabolismo , Ácidos Graxos/metabolismo , Zeaxantinas/metabolismo
16.
Anal Biochem ; 632: 114380, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34520755

RESUMO

rHuPH20, a neutral pH-active hyaluronidase that degrades glycosaminoglycans under physiologic conditions, has six potential N-glycosylation sites. In this report, the rHuPH20 expressed in Chinese hamster ovary (CHO) cells was analyzed and characterized using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Removal of the N-linked glycans from rHuPH20 with PNGase F shifted the molecular weight from 66 kDa to approximately 52 kDa, its deduced molecular weight based on sequence analysis, suggesting that most, if not all, of the potential N-glycosylation sites are linked to oligosaccharides. Then the N-linked glycans released from the rHuPH20 by PNGase F were characterized by UPLC-FLR-MS, and the six N-glycosylation sites of the rHuPH20 were identified and characterized by UPLC-MS/MS at peptide levels. Subsequently, we found that the rHuPH20 increased the dispersion of locally subcutaneous injected drugs and the in vitro and in vivo bioactivity were decreased significantly after PNGase F treatment. In particular, rHuPH20 significantly augmented the absolute bioavailability of locally subcutaneous injected large protein therapeutics, while the bioavailability decreased after being digested by PNGase F. These results demonstrated that N-glycosylation is important for the bioactivity of the rHuPH20.


Assuntos
Moléculas de Adesão Celular/metabolismo , Hialuronoglucosaminidase/metabolismo , Animais , Células CHO , Moléculas de Adesão Celular/genética , Cricetulus , Glicosilação , Humanos , Hialuronoglucosaminidase/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
19.
Plant J ; 86(1): 3-19, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26919811

RESUMO

Diacylglycerol acyltransferases (DGATs) catalyze a rate-limiting step of triacylglycerol (TAG) biosynthesis in higher plants and yeast. The genome of the green alga Chlamydomonas reinhardtii has multiple genes encoding type 2 DGATs (DGTTs). Here we present detailed functional and biochemical analyses of Chlamydomonas DGTTs. In vitro enzyme analysis using a radiolabel-free assay revealed distinct substrate specificities of three DGTTs: CrDGTT1 preferred polyunsaturated acyl CoAs, CrDGTT2 preferred monounsaturated acyl CoAs, and CrDGTT3 preferred C16 CoAs. When diacylglycerol was used as the substrate, CrDGTT1 preferred C16 over C18 in the sn-2 position of the glycerol backbone, but CrDGTT2 and CrDGTT3 preferred C18 over C16. In vivo knockdown of CrDGTT1, CrDGTT2 or CrDGTT3 resulted in 20-35% decreases in TAG content and a reduction of specific TAG fatty acids, in agreement with the findings of the in vitro assay and fatty acid feeding test. These results demonstrate that CrDGTT1, CrDGTT2 and CrDGTT3 possess distinct specificities toward acyl CoAs and diacylglycerols, and may work in concert spatially and temporally to synthesize diverse TAG species in C. reinhardtii. CrDGTT1 was shown to prefer prokaryotic lipid substrates and probably resides in both the endoplasmic reticulum and chloroplast envelope, indicating its role in prokaryotic and eukaryotic TAG biosynthesis. Based on these findings, we propose a working model for the role of CrDGTT1 in TAG biosynthesis. This work provides insight into TAG biosynthesis in C. reinhardtii, and paves the way for engineering microalgae for production of biofuels and high-value bioproducts.


Assuntos
Chlamydomonas reinhardtii/enzimologia , Diacilglicerol O-Aciltransferase/metabolismo , Triglicerídeos/biossíntese , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/genética , Cloroplastos/enzimologia , Diacilglicerol O-Aciltransferase/genética , Diglicerídeos/metabolismo , Retículo Endoplasmático/enzimologia , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Especificidade por Substrato
20.
Plant Cell ; 26(4): 1645-1665, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24692423

RESUMO

To reveal the molecular mechanisms of oleaginousness in microalgae, transcriptomic and lipidomic dynamics of the oleaginous microalga Nannochloropsis oceanica IMET1 under nitrogen-replete (N+) and N-depleted (N-) conditions were simultaneously tracked. At the transcript level, enhanced triacylglycerol (TAG) synthesis under N- conditions primarily involved upregulation of seven putative diacylglycerol acyltransferase (DGAT) genes and downregulation of six other DGAT genes, with a simultaneous elevation of the other Kennedy pathway genes. Under N- conditions, despite downregulation of most de novo fatty acid synthesis genes, the pathways that shunt carbon precursors from protein and carbohydrate metabolic pathways into glycerolipid synthesis were stimulated at the transcript level. In particular, the genes involved in supplying carbon precursors and energy for de novo fatty acid synthesis, including those encoding components of the pyruvate dehydrogenase complex (PDHC), glycolysis, and PDHC bypass, and suites of specific transporters, were substantially upregulated under N- conditions, resulting in increased overall TAG production. Moreover, genes involved in the citric acid cycle and ß-oxidation in mitochondria were greatly enhanced to utilize the carbon skeletons derived from membrane lipids and proteins to produce additional TAG or its precursors. This temporal and spatial regulation model of oil accumulation in microalgae provides a basis for improving our understanding of TAG synthesis in microalgae and will also enable more rational genetic engineering of TAG production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA