Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
1.
Nature ; 626(7998): 411-418, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297130

RESUMO

Ferroptosis, a form of regulated cell death that is driven by iron-dependent phospholipid peroxidation, has been implicated in multiple diseases, including cancer1-3, degenerative disorders4 and organ ischaemia-reperfusion injury (IRI)5,6. Here, using genome-wide CRISPR-Cas9 screening, we identified that the enzymes involved in distal cholesterol biosynthesis have pivotal yet opposing roles in regulating ferroptosis through dictating the level of 7-dehydrocholesterol (7-DHC)-an intermediate metabolite of distal cholesterol biosynthesis that is synthesized by sterol C5-desaturase (SC5D) and metabolized by 7-DHC reductase (DHCR7) for cholesterol synthesis. We found that the pathway components, including MSMO1, CYP51A1, EBP and SC5D, function as potential suppressors of ferroptosis, whereas DHCR7 functions as a pro-ferroptotic gene. Mechanistically, 7-DHC dictates ferroptosis surveillance by using the conjugated diene to exert its anti-phospholipid autoxidation function and shields plasma and mitochondria membranes from phospholipid autoxidation. Importantly, blocking the biosynthesis of endogenous 7-DHC by pharmacological targeting of EBP induces ferroptosis and inhibits tumour growth, whereas increasing the 7-DHC level by inhibiting DHCR7 effectively promotes cancer metastasis and attenuates the progression of kidney IRI, supporting a critical function of this axis in vivo. In conclusion, our data reveal a role of 7-DHC as a natural anti-ferroptotic metabolite and suggest that pharmacological manipulation of 7-DHC levels is a promising therapeutic strategy for cancer and IRI.


Assuntos
Desidrocolesteróis , Ferroptose , Humanos , Membrana Celular/metabolismo , Colesterol/biossíntese , Colesterol/metabolismo , Sistemas CRISPR-Cas/genética , Desidrocolesteróis/metabolismo , Genoma Humano , Nefropatias/metabolismo , Membranas Mitocondriais/metabolismo , Metástase Neoplásica , Neoplasias/metabolismo , Neoplasias/patologia , Fosfolipídeos/metabolismo , Traumatismo por Reperfusão/metabolismo
2.
Nature ; 621(7979): 602-609, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37704733

RESUMO

Vertebral bone is subject to a distinct set of disease processes from long bones, including a much higher rate of solid tumour metastases1-4. The basis for this distinct biology of vertebral bone has so far remained unknown. Here we identify a vertebral skeletal stem cell (vSSC) that co-expresses ZIC1 and PAX1 together with additional cell surface markers. vSSCs display formal evidence of stemness, including self-renewal, label retention and sitting at the apex of their differentiation hierarchy. vSSCs are physiologic mediators of vertebral bone formation, as genetic blockade of the ability of vSSCs to generate osteoblasts results in defects in the vertebral neural arch and body. Human counterparts of vSSCs can be identified in vertebral endplate specimens and display a conserved differentiation hierarchy and stemness features. Multiple lines of evidence indicate that vSSCs contribute to the high rates of vertebral metastatic tropism observed in breast cancer, owing in part to increased secretion of the novel metastatic trophic factor MFGE8. Together, our results indicate that vSSCs are distinct from other skeletal stem cells and mediate the unique physiology and pathology of vertebrae, including contributing to the high rate of vertebral metastasis.


Assuntos
Neoplasias da Mama , Linhagem da Célula , Metástase Neoplásica , Coluna Vertebral , Células-Tronco , Humanos , Neoplasias da Mama/patologia , Diferenciação Celular , Autorrenovação Celular , Metástase Neoplásica/patologia , Osteoblastos/citologia , Osteoblastos/patologia , Coluna Vertebral/citologia , Coluna Vertebral/patologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Células-Tronco/patologia , Biomarcadores
3.
Nature ; 621(7980): 804-812, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37730988

RESUMO

Craniosynostosis is a group of disorders of premature calvarial suture fusion. The identity of the calvarial stem cells (CSCs) that produce fusion-driving osteoblasts in craniosynostosis remains poorly understood. Here we show that both physiologic calvarial mineralization and pathologic calvarial fusion in craniosynostosis reflect the interaction of two separate stem cell lineages; a previously identified cathepsin K (CTSK) lineage CSC1 (CTSK+ CSC) and a separate discoidin domain-containing receptor 2 (DDR2) lineage stem cell (DDR2+ CSC) that we identified in this study. Deletion of Twist1, a gene associated with craniosynostosis in humans2,3, solely in CTSK+ CSCs is sufficient to drive craniosynostosis in mice, but the sites that are destined to fuse exhibit an unexpected depletion of CTSK+ CSCs and a corresponding expansion of DDR2+ CSCs, with DDR2+ CSC expansion being a direct maladaptive response to CTSK+ CSC depletion. DDR2+ CSCs display full stemness features, and our results establish the presence of two distinct stem cell lineages in the sutures, with both populations contributing to physiologic calvarial mineralization. DDR2+ CSCs mediate a distinct form of endochondral ossification without the typical haematopoietic marrow formation. Implantation of DDR2+ CSCs into suture sites is sufficient to induce fusion, and this phenotype was prevented by co-transplantation of CTSK+ CSCs. Finally, the human counterparts of DDR2+ CSCs and CTSK+ CSCs display conserved functional properties in xenograft assays. The interaction between these two stem cell populations provides a new biologic interface for the modulation of calvarial mineralization and suture patency.


Assuntos
Craniossinostoses , Humanos , Camundongos , Animais , Craniossinostoses/genética , Osteogênese , Linhagem da Célula , Fenótipo , Células-Tronco
4.
Chemistry ; 30(9): e202303708, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38088216

RESUMO

The study on structure-property relationship has been a significant focus in the field of organic molecular luminescence. In the present work, three chiral binaphthyl-based triphenylethylene (HTPE) derivatives were prepared through condensation reactions. Despite their similar structures, these compounds exhibited distinct luminescent properties. Diphenylmethane-derived HTPE displayed dual-state emissions, characterized by dual-wavelength emissions which were insensitive to the polarity of solvents. The dual emissions in solution state could be attributed to the different locally excited (LE) excitons. However, upon aggregation, two stable conformers were generated, probably leading to different emission peaks. In contrast, dibenzocycloheptadiene-derived HTPE aggregates showed only a single emission peak. Surprisingly, fluorene-derived HTPE exhibited obvious luminescence in neither solution nor aggregate states due to inherent π-π interactions. These conclusions were substantiated by X-ray analysis, spectroscopic analysis, and theory calculations. Application studies demonstrated that fluorescence on/off switches could be achieved through exposure to acetone. More importantly, trace amounts of acetone could be detected using luminescent materials in both organic and aqueous phases with a detection limit of 0.08 %. Thus, this work not only presents a strategy for designing chiral triphenylethylene fluorophores but also provides valuable information for dual wavelength emissions resulting from two stable conformations.

5.
Fish Shellfish Immunol ; 151: 109696, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38871144

RESUMO

The hepatopancreas is the biggest digestive organ in Amphioctopus fangsiao (A. fangsiao), but also undertakes critical functions like detoxification and immune defense. Generally, pathogenic bacteria or endotoxin from the gut microbiota would be arrested and detoxified in the hepatopancreas, which could be accompanied by the inevitable immune responses. In recent years, studies related to cephalopods immune have been increasing, but the molecular mechanisms associated with the hepatopancreatic immunity are still unclear. In this study, lipopolysaccharide (LPS), a major component of the cell wall of Gram-negative bacteria, was used for imitating bacteria infection to stimulate the hepatopancreas of A. fangsiao. To investigate the immune process happened in A. fangsiao hepatopancreas, we performed transcriptome analysis of hepatopancreas tissue after LPS injection, and identified 2615 and 1943 differentially expressed genes (DEGs) at 6 and 24 h post-injection, respectively. GO and KEGG enrichment analysis showed that these DEGs were mainly involved in immune-related biological processes and signaling pathways, including ECM-receptor interaction signaling pathway, Phagosome signaling pathway, Lysosome signaling pathway, and JAK-STAT signaling pathways. The function relationships between these DEGs were further analyzed through protein-protein interaction (PPI) networks. It was found that Mtor, Mapk14 and Atm were the three top interacting DEGs under LPS stimulation. Finally, 15 hub genes involving multiple KEGG signaling pathways and PPI relationships were selected for qRT-PCR validation. In this study, for the first time we explored the molecular mechanisms associated with hepatopancreatic immunity in A. fangsiao using a PPI networks approach, and provided new insights for understanding hepatopancreatic immunity in A. fangsiao.

6.
J Fluoresc ; 34(1): 425-436, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37284963

RESUMO

A novel reagent named 4-(N-methyl-1,3-dioxo-benzoisoquinolin-6-yl-oxy)benzene sulfonyl chloride (MBIOBS-Cl) for the determination of estrogens in food samples by high-performance liquid chromatography (HPLC) with fluorescence detection has been developed. Estrogens could be easily labeled by MBIOBS-Cl in Na2CO3-NaHCO3 buffer solution at pH 10.0. The complete labeling reaction for estrogens could be accomplished within five minutes, the corresponding derivatives exhibited strong fluorescence with the maximum excitation and emission wavelengths at 249 nm and 443 nm, respectively. The derivatization conditions, such as the molar ratio of reagent to estrogens, derivatization time, pH, temperature, and buffers were optimized. Derivatives were sufficiently stable to be efficiently analyzed by HPLC with a reversed-phase Agilent ZORBAX 300SB-C18 column with a good baseline resolution. Excellent linear correlations were obtained for all estrogen derivatives with correlation coefficients greater than 0.9998. Ultrasonic-Assisted extraction was used to optimize the extraction of estrogens from meat samples with a recovery higher than 82%. The detection limits (LOD, S/N = 3) of the method ranged from 0.95 to 3.3 µg· kg-1. The established method, which is fast, simple, inexpensive, and environment friendly, can be successfully applied for the detection of four steroidal estrogens from meat samples with little matrix interference.


Assuntos
Estrogênios , Carne , Estrogênios/análise , Cromatografia Líquida de Alta Pressão/métodos , Carne/análise
7.
Toxicol Ind Health ; 40(4): 176-184, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38349948

RESUMO

A rapid and sensitive assessment of the toxicity of oxygenated polycyclic aromatic hydrocarbons (OPAHs), widely distributed persistent organic pollutants in the environment, is crucial for human health. In this study, using high-performance liquid chromatography, the separation and detection of four purines, xanthine (X), guanine (G), adenine (A), and hypoxanthine (HX) in cells were performed. The aim was to evaluate the cytotoxicity of three OPAHs, namely 1,4-benzoquinone (1,4-BQ), 1,2-naphthoquinone (1,2-NQ) and 9,10-phenanthrenequinone (9,10-PQ), with higher environmental concentrations, from the perspective of purine nucleotide metabolism in human skin fibroblast cells (HFF-1). The results revealed that the levels of G and A were low in HFF-1 cells, while the levels of HX and X showed a dose-response relationship with persistent organic pollutants concentration. With increased concentration of the three persistent organic pollutants, the purine metabolism in HFF-1 cells weakened, and the impact of the three persistent organic pollutants on purine metabolism in cells was in the order of 9,10-PQ > 1,4-BQ > 1,2-NQ. This study provided valuable insights into the toxic mechanisms of 1,4-BQ, 1,2-NQ and 9,10-PQ, contributing to the formulation of relevant protective measures and the safeguarding of human health.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Humanos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Orgânicos Persistentes , Cromatografia Líquida de Alta Pressão/métodos , Purinas/análise , Fibroblastos/química
8.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731970

RESUMO

Malaria is a severe disease that presents a significant threat to human health. As resistance to current drugs continues to increase, there is an urgent need for new antimalarial medications. Aminoacyl-tRNA synthetases (aaRSs) represent promising targets for drug development. In this study, we identified Plasmodium falciparum tyrosyl-tRNA synthetase (PfTyrRS) as a potential target for antimalarial drug development through a comparative analysis of the amino acid sequences and three-dimensional structures of human and plasmodium TyrRS, with particular emphasis on differences in key amino acids at the aminoacylation site. A total of 2141 bioactive compounds were screened using a high-throughput thermal shift assay (TSA). Okanin, known as an inhibitor of LPS-induced TLR4 expression, exhibited potent inhibitory activity against PfTyrRS, while showing limited inhibition of human TyrRS. Furthermore, bio-layer interferometry (BLI) confirmed the high affinity of okanin for PfTyrRS. Molecular dynamics (MD) simulations highlighted the stable conformation of okanin within PfTyrRS and its sustained binding to the enzyme. A molecular docking analysis revealed that okanin binds to both the tyrosine and partial ATP binding sites of the enzyme, preventing substrate binding. In addition, the compound inhibited the production of Plasmodium falciparum in the blood stage and had little cytotoxicity. Thus, okanin is a promising lead compound for the treatment of malaria caused by P. falciparum.


Assuntos
Antimaláricos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Plasmodium falciparum , Tirosina-tRNA Ligase , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Tirosina-tRNA Ligase/antagonistas & inibidores , Tirosina-tRNA Ligase/metabolismo , Humanos , Antimaláricos/farmacologia , Antimaláricos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Sítios de Ligação , Ligação Proteica , Animais , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia
9.
Molecules ; 29(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38893545

RESUMO

Tetraploid oysters are artificially produced oysters that do not exist in nature. The successful breeding of 100% triploid oysters resolved the difficulties of traditional drug-induced triploids, such as the presence of drug residues and a low triploid induction rate. However, little is known concerning the biochemical composition and nutrient contents of such tetraploids. Therefore, we investigated compositional differences among diploid, triploid, and tetraploid Crassostrea gigas as well as between males and females of diploids and tetraploids. The findings indicated that glycogen, EPA, ∑PUFA, and omega-3 contents were significantly higher in triploid oysters than in diploids or tetraploids; tetraploid oysters had a significantly higher protein content, C14:0, essential amino acid, and flavor-presenting amino acid contents than diploids or triploids. For both diploid and tetraploids, females had significantly higher levels of glutamate, methionine, and phenylalanine than males but lower levels of glycine and alanine. In addition, female oysters had significantly more EPA, DHA, omega-3, and total fatty acids, a result that may be due to the fact that gonadal development in male oysters requires more energy to sustain growth, consumes greater amounts of nutrients, and accumulates more proteins. With these results, important information is provided on the production of C. gigas, as well as on the basis and backing for the genetic breeding of oysters.


Assuntos
Aminoácidos , Crassostrea , Diploide , Ácidos Graxos , Tetraploidia , Triploidia , Animais , Crassostrea/genética , Crassostrea/metabolismo , Aminoácidos/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos/análise , Feminino , Masculino
10.
BMC Genomics ; 24(1): 503, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37649007

RESUMO

BACKGROUND: Cadmium (Cd) flows into the ocean with industrial and agricultural pollution and significantly affects the growth and development of economic cephalopods such as Sepia esculenta, Amphioctopus fangsiao, and Loligo japonica. As of now, the reasons why Cd affects the growth and development of S. esculenta are not yet clear. RESULTS: In this study, transcriptome and four oxidation and toxicity indicators are used to analyze the toxicological mechanism of Cd-exposed S. esculenta larvae. Indicator results indicate that Cd induces oxidative stress and metal toxicity. Functional enrichment analysis results suggest that larval ion transport, cell adhesion, and some digestion and absorption processes are inhibited, and the cell function is damaged. Comprehensive analysis of protein-protein interaction network and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was used to explore S. esculenta larval toxicological mechanisms, and we find that among the 20 identified key genes, 14 genes are associated with neurotoxicity. Most of them are down-regulated and enriched to the neuroactive ligand-receptor interaction signaling pathway, suggesting that larval nervous system might be destroyed, and the growth, development, and movement process are significantly affected after Cd exposure. CONCLUSIONS: S. esculenta larvae suffered severe oxidative damage after Cd exposure, which may inhibit digestion and absorption functions, and disrupt the stability of the nervous system. Our results lay a function for understanding larval toxicological mechanisms exposed to heavy metals, promoting the development of invertebrate environmental toxicology, and providing theoretical support for S. esculenta artificial culture.


Assuntos
Sepia , Animais , Sepia/genética , Decapodiformes , Agricultura , Cádmio/toxicidade , Larva/genética
11.
Anal Chem ; 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36629754

RESUMO

Programmed cell death (PCD) is a precisely controlled physiological process to sustain tissue homeostasis. Even though the PCD pathways have been explicitly subdivided, the individual cell death process seems to synergistically operate to eliminate cells rather than separately execute signal transduction. Apoptosis is the dominant intracellular PCD subtype, which is intimately regulated and controlled by mitochondria, thus tracing mitochondrial actions could reveal the dynamic changes of apoptosis, which may provide important tools for screening preclinical therapeutic agents. Herein, we exploited an innovative fluorophore Cy496 based on the light-initiated cleavage reaction. Cy496 bears the typical D-π-A structure and serves as a versatile building block for chemosensor construction through flexible side chains. By regulating lipophilicity and basicity through bis-site substitution, we synthesized a series of fluorescence probes and screened a novel mitochondria-targeted ratiometric probe Cy1321, which can real-time evaluate the dynamic changes of mitochondrial micropolarity mediated by bis-cholesterol anchoring. Cy1321 has realized two-color quantification and real-time visualization of polarity fluctuations on chemotherapy agent (cisplatin)-induced apoptosis through flow cytometry and confocal imaging and also achieved the purpose of detecting mitochondria-related apoptosis at the level of tissues. It is envisioned that Cy1321 has sufficient capability as a promising and facile tool for the evaluation of apoptosis and contributing to therapeutic drug screening.

12.
Anal Chem ; 95(46): 17089-17098, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37940603

RESUMO

Molecular diffusion and leakage impede the long-term retention of probes/drugs and may cause potential adverse effects in theranostic fields. Spatiotemporally manipulating the organelle-immobilization behavior of probes/drugs for prolonged tumor retention is indispensable to achieving effective cancer diagnosis and therapy. Herein, we propose a rational strategy that could realize near-infrared light-activated ribonucleic acids (RNAs) cross-linking for prolonged tumor retention and simultaneously endogenous hydrogen sulfide (H2S) monitoring in colorectal tumors. Profiting from efficient singlet oxygen (1O2) generation from Cy796 under 808 nm light irradiation, the 1O2-animated furan moiety in Cy796 could covalently cross-link with cytoplasmic RNAs via a cycloaddition reaction and realize organelle immobilization. Subsequently, specific thiolysis of Cy796 assisted with H2S resulted in homologous product Cy644 with reduced 1O2 generation yields and enhanced absolute fluorescence quantum yields (from 7.42 to 27.70%) with blue-shifted absorption and emission, which avoided the molecular oxidation fluorescence quenching effect mediated by 1O2 and validated fluorescence imaging. Furthermore, studies have demonstrated that our proposed strategy possessed adequate capacity for fluorescence imaging and endogenous H2S detection in HCT116 cells, particularly accumulated at the tumor sites, and retained long-term imaging with excellent biocompatibility. The turn-on fluorescence mode and turn-off 1O2 generation efficiency in our strategy successfully realized a diminished fluorescence cross-talk and oxidation quenching effect. It is adequately envisioned that our proposed strategy for monitoring biomarkers and prolonged tumor retention will contribute tremendous dedication in the clinical, diagnostic, and therapeutic fields.


Assuntos
Neoplasias Colorretais , Sulfeto de Hidrogênio , Humanos , RNA Mitocondrial , Corantes Fluorescentes , Neoplasias Colorretais/diagnóstico por imagem , Imagem Óptica/métodos
13.
Anal Chem ; 95(19): 7761-7769, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37140051

RESUMO

Protein methylation is the smallest possible yet vitally important post-translational modification (PTM). This small and chemically inert addition in proteins makes the analysis of methylation more challenging, thus calling for an efficient tool for the sake of recognition and detection. Herein, we present a nanofluidic electric sensing device based on a functionalized nanochannel that was constructed by introducing monotriazole-containing p-sulfonatocalix[4]arene (TSC) into a single asymmetric polymeric nanochannel via click chemistry. The device can selectively detect lysine methylpeptides with subpicomole sensitivity, distinguish between different lysine methylation states, and monitor the lysine methylation process by methyltransferase at the peptide level in real time. The introduced TSC molecule, with its confined asymmetric configuration, presents the remarkable ability to selectively bind to lysine methylpeptides, which, coupled with the release of the complexed Cu ions, allows the device to transform the molecular-level recognition to the discernible change in ionic current of the nanofluidic electric device, thus enabling detection. This work could serve as a stepping stone to the development of a new methyltransferase assay and the chemical that specifically targets lysine methylation in PTM proteomics.


Assuntos
Lisina , Proteínas , Metilação , Lisina/metabolismo , Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Metiltransferases/metabolismo
14.
Anal Chem ; 95(27): 10390-10397, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37358224

RESUMO

Oxidation and protein phosphorylation are critical mechanisms involved in regulating various cellular activities. Increasing research has suggested that oxidative stress could affect the activities of specific kinases or phosphatases, leading to alterations in the phosphorylation status of certain proteins. Ultimately, these alterations can affect cellular signaling pathways and gene expression patterns. However, the relationship between oxidation and protein phosphorylation remains complex and not yet fully understood. Therefore, the development of effective sensors capable of detecting both oxidation and protein phosphorylation simultaneously presents an ongoing challenge. To address this need, we introduce a proof-of-concept nanochannel device that is dual-responsive to both H2O2 and phosphorylated peptide (PP). Specifically, we design a peptide GGGCEG(GPGGA)4CEGRRRR, which contains an H2O2-sensitive unit CEG, an elastic peptide fragment (GPGGA)4, and a phosphorylation site recognition fragment RRRR. When the peptides are immobilized on the inner walls of conical nanochannels in a polyethylene terephthalate membrane, this peptide-modified nanochannel device exhibits a sensitive response to both H2O2 and PPs. The peptide chains undergo a random coil-to-α-helix transition in response to H2O2, which leads to a close-to-open transition of the nanochannel, accompanied with a remarkable increase in the transmembrane ionic current. In contrast, binding of the peptides with PPs shields the positive charge of the RRRR fragments, causing a decrease of the transmembrane ionic current. These unique features enable the sensitive detection of reactive oxygen species released by 3T3-L1 cells stimulated by platelet-derived growth factor (PDGF) as well as PDGF-induced change in the PP level. Real-time kinase activity monitoring further confirms the device's potential utility for kinase inhibitor screening.


Assuntos
Peróxido de Hidrogênio , Peptídeos , Peróxido de Hidrogênio/farmacologia , Peptídeos/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Fosforilação , Estresse Oxidativo
15.
Chemistry ; 29(62): e202301766, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37550834

RESUMO

Small organic molecules which can emit fluorescence with tunable dual emission bands are significant for fundamental research and broad applications. In this work, two binaphthyl based arylacrylonitrile derivatives with pyrene and triphenylamine unit (BiNp-Py and BiNp-TPA) were designed and synthesized, respectively, featuring chiral backbone and dual AIE-active cyanostyrene-linked chromophores. Excellent fluorescence emissions in a range of solution and solid states were observed with high quantum yields, indicative of the solvatochromism and mechanochromism. More interestingly, dual emission bands were found and tunable by the water fraction in THF, and speculatively attributed to the balancing of intramolecular charge transfer (ICT) and locally excited (LE) emission in solution and aggregate states. Furthermore, the potential application in anti-counterfeiting ink was also explored, indicating the very low concentration (5 ppm) for sufficient distinguishable vision and small colour migration (28 nm) for printing on the filter. The present work provides a new strategy to design organic luminescent structure having widely fluorescent emissions in dual states and a valuable reference for the study of chiral optical materials.

16.
Fish Shellfish Immunol ; 132: 108477, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36494033

RESUMO

Marine organisms are threatened by various environmental contaminants, and nanoplastics (NPs) is one of the most concerned. Studied have shown that NPs has a certain impact on marine organisms, but the specific molecular mechanism is still unclear. At present, researches on the effect of NPs on marine life mostly focus on crustaceans, gastropods, and bivalves. In this study, cephalopod Sepia esculenta larvae were first used to investigate the potential immune response molecular mechanisms caused by PS-NPs (50 nm, 50 mg/L) short-term exposure (4 and 24 h). Through S. esculenta larvae transcriptome profile of gene expression analysis, 548 and 1990 genes showed differential expression at 4 and 24 h after NPs exposure, respectively. GO and KEGG enrichment analysis were performed to find immune related DEGs. Then, the interaction relationship between the immune related DEGs after NPs exposure was known through the constructed protein-protein interaction network. 20 hub genes were found on the base of KEGG pathway numbers involved and protein-protein interaction numbers. This research supply valuable genes for the study of cephalopod immune response caused by NPs, which can help us further uncover the molecular mechanisms of organism against NPs.


Assuntos
Sepia , Poluentes Químicos da Água , Animais , Larva/metabolismo , Sepia/genética , Sepia/metabolismo , Microplásticos , Transcriptoma , Perfilação da Expressão Gênica , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
17.
Fish Shellfish Immunol ; 143: 109230, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37977542

RESUMO

Copper (Cu) and Cadmium (Cd), prevalent heavy metals in marine environments, have known implications in oxidative stress, immune response, and toxicity in marine organisms. Sepia esculenta, a cephalopod of significant economic value along China's eastern coastline, experiences alterations in growth, mobility, and reproduction when subjected to these heavy metals. However, the specific mechanisms resulting from heavy metal exposure in S. esculenta remain largely uncharted. In this study, we utilized transcriptome and four oxidative, immunity, and toxicity indicators to assess the toxicological mechanism in S. esculenta larvae exposed to Cu and Cd. The measurements of Superoxide Dismutase (SOD), Malondialdehyde (MDA), Glutathione S-Transferase (GST), and Metallothioneins (MTs) revealed that Cu and Cd trigger substantial oxidative stress, immune response, and metal toxicity. Further, we performed an analysis on the transcriptome data through Weighted Gene Co-expression Network Analysis (WGCNA) and Protein-Protein Interaction (PPI) network analysis. Our findings indicate that exposure methods and duration influence the type and the extent of toxicity and oxidative stress within the S. esculenta larvae. We took an innovative approach in this research by integrating WGCNA and PPI network analysis with four significant physiological indicators to closely examine the toxicity and oxidative stress profiles of S. esculenta upon exposure to Cu and Cd. This investigation is vital in decoding the toxicological, immunological, and oxidative stress mechanisms within S. esculenta when subjected to heavy metals. It provides foundational insights capable of advancing invertebrate environmental toxicology and informs S. esculenta artificial breeding practices.


Assuntos
Metais Pesados , Sepia , Animais , Cobre/toxicidade , Cádmio/toxicidade , Sepia/metabolismo , Antioxidantes/metabolismo , Redes Reguladoras de Genes , Larva/genética , Larva/metabolismo , Estresse Oxidativo , Metais Pesados/toxicidade , Imunidade
18.
Fish Shellfish Immunol ; 136: 108733, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37028690

RESUMO

Amphioctopus fangsiao was a representative economic species in cephalopods, which was vulnerable to marine bacteria. Vibrio anguillarum was a highly infectious pathogen that have recently been found to infect A. fangsiao and inhibit its growth and development. There were significant differences in the immune response mechanisms between egg-protected and egg-unprotected larvae. To explore larval immunity under different egg-protecting behaviors, we infected A. fangsiao larvae with V. anguillarum for 24 h and analyzed the transcriptome data about egg-protected and egg-unprotected larvae infected with 0, 4, 12, and 24 h using weighted gene co-expression networks (WGCNA) and protein-protein interaction (PPI) networks. Network analyses revealed a series of immune response processes after infection, and identified six key modules and multiple immune-related hub genes. Meanwhile, we found that ZNF family, such as ZNF32, ZNF160, ZNF271, ZNF479, and ZNF493 might play significant roles in A. fangsiao immune response processes. We first creatively combined WGCNA and PPI network analysis to deeply explore the immune response mechanisms of A. fangsiao larvae with different egg-protecting behaviors. Our results provided further insights into the immunity of V. anguillarum infected invertebrates, and laid the foundation for exploring the immune differences among cephalopods with different egg protecting behaviors.


Assuntos
Octopodiformes , Vibrioses , Vibrio , Animais , Redes Reguladoras de Genes , Larva/genética , Larva/microbiologia , Invertebrados/genética , Octopodiformes/genética , Imunidade , Perfilação da Expressão Gênica/veterinária , Vibrio/fisiologia
19.
Fish Shellfish Immunol ; 133: 108544, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36646339

RESUMO

Aquatic viruses can spread rapidly and widely in seawater for their high infective ability. Polyinosinic-polycytidylic acid (Poly I:C), a viral dsRNA analog, is an immunostimulant that has been proved to activate various immune responses of immune cells in invertebrate. Hemolymph is a critical site that host immune response in invertebrates, and its transcriptome information obtained from Amphioctopus fangsiao stimulated by Poly I:C is crucial for understanding the antiviral molecular mechanisms of this species. In this study, we analyzed gene expression data in A. fangsiao hemolymph tissue within 24 h under Poly I:C stimulation and found 1082 and 299 differentially expressed genes (DEGs) at 6 and 24 h, respectively. Union set (1,369) DEGs were selected for subsequent analyses. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses were carried out for identifying DEGs related to immunity. Several significant immune-related terms and pathways, such as toll-like receptor signaling pathways term, inflammatory response term, TNF signaling pathway, and chemokine signaling pathway were identified. A protein-protein interaction (PPI) network was constructed for examining the relationships among immune-related genes. Finally, 12 hub genes, including EGFR, ACTG1, MAP2K1, and other nine hub genes, were identified based on the KEGG enrichment analysis and PPI network. The quantitative RT-PCR (qRT-PCR) was used to verify the expression profile of 12 hub genes. This research provides a reference for solving the problem of high mortality of A. fangsiao and other mollusks and provides a reference for the future production of some disease-resistant A. fangsiao.


Assuntos
Perfilação da Expressão Gênica , Poli I-C , Animais , Poli I-C/farmacologia , Hemolinfa , Transcriptoma , Imunidade , Biologia Computacional
20.
Fish Shellfish Immunol ; 132: 108494, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36565999

RESUMO

As a well-known marine metal element, Cd can significantly affect bivalve mollusk life processes such as growth and development. However, the effects of Cd on the molecular mechanisms of the economically important cephalopod species Sepia esculenta remain unclear. In this study, S. esculenta larval immunity exposed to Cd is explored based on RNA-Seq. The analyses of GO, KEGG, and protein-protein interaction (PPI) network of 1,471 differentially expressed genes (DEGs) reveal that multiple immune processes are affected by exposure such as inflammatory reaction and cell adhesion. Comprehensive analyses of KEGG signaling pathways and the PPI network are first used to explore Cd-exposed S. esculenta larval immunity, revealing the presence of 16 immune-related key and hub genes involved in exposure response. Results of gene and pathway functional analyses increase our understanding of Cd-exposed S. esculenta larval immunity and improve our overall understanding of mollusk immune functions.


Assuntos
Sepia , Animais , Sepia/genética , Decapodiformes/genética , Larva/genética , Cádmio/toxicidade , Transcriptoma , Perfilação da Expressão Gênica/veterinária , Imunidade/genética , Biologia Computacional/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA