RESUMO
Translationally controlled tumor protein (TCTP) is a highly conserved, multifunctional protein that has been implicated in a range of cell physiologic processes, especially cell growth and development. A TCTP-like gene has been identified in the Toxoplasma genome [ Toxoplasma gondii TCTP ( TgTCTP)], although its function remains unknown. The sequence analysis of TgTCTP indicated that it is a highly conserved protein in eukaryotes. We found that the expression level of TgTCTP in the virulent RH strain was significantly higher than that in the avirulent PLK strain. Indirect immunofluorescence showed that TgTCTP was expressed in the parasite cytoplasm. The localization of TgTCTP was unchanged during the replication of the parasite. We expressed a functional recombinant TgTCTP (r TgTCTP) protein in Escherichia coli and found that the recombinant protein could form a multimer. We then evaluated the function of TgTCTP using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 knockout (KO) system. Phenotypic analysis of the KO strain (Δ TgTCTP) revealed that TgTCTP is required for the robust growth of the parasites. TgTCTP deficiency also led to early egress of the parasites and subsequent impairment in their invasion and attachment abilities. We subsequently found that the multimer form of TgTCTP might not be necessary for the growth and replication of the parasite. Then the expression profiling of genes in the Δ TgTCTP and complement strains were analyzed. The results revealed that 988 genes were regulated in Δ TgTCTP compared with the complement strain. Overall, although not essential, TgTCTP is required for the fast growth of Tg and maintenance of its intracellular development.-Zheng, J., Chen, Y., Li, Z., Cao, S., Zhang, Z., Jia, H. Translationally controlled tumor protein is required for the fast growth of Toxoplasma gondii and maintenance of its intracellular development.
Assuntos
Biomarcadores Tumorais/biossíntese , Proteínas de Protozoários/biossíntese , Toxoplasma/crescimento & desenvolvimento , Biomarcadores Tumorais/genética , Sistemas CRISPR-Cas , Técnicas de Silenciamento de Genes , Humanos , Proteínas de Protozoários/genética , Toxoplasma/genética , Proteína Tumoral 1 Controlada por TraduçãoRESUMO
Toxoplasma gondii is an obligate intracellular parasite of phylum Apicomplexa. To facilitate high-efficiency invasion of host cells, T. gondii secretes various proteins related to the moving junction (MJ) complex from rhoptries and micronemes into the interface between the parasite and host. AMA1/RON2/4/5/8 is an important MJ complex, but its mechanism of assembly remains unclear. In this study, we used the CRISPR-Cas9 system to generate a derivative of T. gondii strain RH with a null mutation in TgRON4, thought to be an essential MJ component. Deficiency of TgRON4 moderately decreased invasion ability relative to that of the wild-type parasite. In addition, expression of the endogenous N-terminal fragment of RON5 decreased in the mutant. Together, the results improve our understanding of the assembly mechanism of the MJ complex of T. gondii and raise the possibility of developing new therapeutic drugs that target this complex.
Assuntos
Proteínas de Membrana/metabolismo , Proteínas de Protozoários/fisiologia , Toxoplasma/fisiologia , Animais , Sistemas CRISPR-Cas , Membrana Celular/metabolismo , Células Cultivadas , Técnicas de Inativação de Genes , Interações Hospedeiro-Parasita , Humanos , Mutação com Perda de Função , Proteínas de Membrana/genética , Ligação Proteica , Proteínas de Protozoários/genética , Toxoplasma/genéticaRESUMO
Identification of nitrogen (N) sources is important in water quality control and management. Nitrogen pollution can lead to eutrophication of waterbodies and high concentrations of nitrate in drinking water can pose potential health problems. The 15N isotope and nitrogen fluxes budget approach is useful for determining the source of
Assuntos
Nitrogênio/análise , Poluição da Água/análise , Abastecimento de Água/estatística & dados numéricos , China , Isótopos de Nitrogênio/análiseRESUMO
The remediation of polluted coastal rivers is a global challenge in the environmental field. The objective of this study was to investigate the remediation feasibility of a high-salinity river using water spinach (WS) and sticky rice (SR) in hydroponic floating-bed systems. In this study, the total nitrogen (TN) removal rates were 89.7, 92.3, 85.1, and 75.2% in the WS floating-bed system and 81.2 and 78.9% in the SR floating-bed system under different salinities (2-31 psu). Additionally, the total phosphorus (TP) removal rates were 94.4, 96.4, 93.5, and 75.2% in the WS floating-bed system and 75.7 and 80.0% in the SR floating-bed system under different salinities. The results indicate that WS and SR significantly contributed to the remediation of a polluted tidal river. Additionally, increased salinity suppressed the removal of ammonium and phosphate by WS and SR. The salt tolerance of WS was greater than that of SR, which indicated that WS was a more appropriate choice for treating river contamination.
Assuntos
Recuperação e Remediação Ambiental/métodos , Poluentes Químicos da Água/análise , Ecologia , Monitoramento Ambiental , Nitrogênio/análise , Fósforo/análise , Rios/químicaRESUMO
Organic matter (OM) significantly impacts the environmental behavior of sulfur and heavy metals. In this study, the effects of OM on the migration and transformation of sulfur and heavy metals in mariculture sediments were investigated. The results indicated that baiting had a strong impact on the accumulation of acid volatile sulfur (AVS) (P < 0.05) and increased the environmental risk of sulfide in sediments. The addition of bait promoted the generation of chromium (II)-reducible sulfur (CRS); however, the resistance of AVS to CRS conversion increased with increasing bait addition. The addition of bait considerably influenced Cd accumulation. The acid-soluble fractions of Cr and Cu and the oxidizable fraction of Cd were primarily affected by the bait addition (coefficient of variation>15 %). An increase in the reducible fraction promoted the conversion of AVS to CRS, which reduced the degree of sediment aging. Higher OM levels reduced the diversity and abundance of the bacterial communities. The sulfate respiration functional microbiota was particularly affected by OM.
Assuntos
Sedimentos Geológicos , Metais Pesados , Enxofre , Poluentes Químicos da Água , Sedimentos Geológicos/química , Metais Pesados/análise , Poluentes Químicos da Água/análise , Monitoramento AmbientalRESUMO
Suspended particulate matter (SPM) is an important heavy metal transporter in water. As a well-known high-SPM river, its impact on the distribution and migration of heavy metals in the Yellow River (YR) deserves special attention. In this study, the spatial distributions of heavy metals in surface water and SPM of the YR were investigated. The results indicate that the concentrations (dissolved and particulate phases) and bioavailability (particulate phase) of most heavy metals were higher during the rainy season than during the dry season. A considerable proportion of heavy metals (>70 %) was transported by SPM and fine particles (clay) controlled the pollution status of heavy metals in the YR. This could lead to higher heavy metal concentrations in the SPM midstream and downstream during the rainy season and higher heavy metal concentrations in upstream during the dry season. Heavy metal adsorption experiments showed that specific combination methods (such as binding with carbonate) between Cd and SPM may cause SPM to act as a source of Cd midstream and downstream. This study provides a new perspective on the effects of SPM on heavy metal distribution and migration in the YR.
RESUMO
Manipulation of infrared emissivity, which is closely related to surface structure and optical parameters of materials, is a crucial approach for realizing dynamic thermal management. In this study, we design a metamaterial consisting of an array of aluminum disks embedded on a surface of a stretchable elastomeric substrate. Mechanical stretching-induced deformation allows dynamic modification of the surface structure and equivalent optical parameters, thus enabling dynamic control of the emissivity. By utilizing the elastomer polydimethylsiloxane (PDMS) as the substrate, the microstructure interdisk gap can be altered by stretching the PDMS. Through theoretical calculations, the plausibility of this approach is explained by the excitation of plasmon resonance and the variation in the exposed area of highly absorbent PDMS, and the optimal structures for tuning the infrared emissivity are revealed to be 6 µm in diameter and 100 nm in height. Based on this design, we prepare samples with periods of 7 and 7.9 µm and experimentally demonstrate that a change in the period can cause a change in the emissivity and thus tunability in thermal control performance. The temperature difference between the two samples reaches 44.1 °C at a heating power of 0.28 W/cm2 for both samples. Furthermore, we construct a stretching platform that enables in situ mechanical stretching to realize dynamic changes in emissivity. The integral infrared emissivity of the sample increases from 0.32 to 0.5 at a biaxial tensile strain of 13%, achieving a 56% modulation rate of the integral infrared emissivity. The material is expected to enable dynamic thermal management.
RESUMO
As a special geographical location between rivers and oceans, coastal estuaries always face severe heavy metal contaminations, especially in semi-closed bay. In this study, the spatial distribution, chemical fraction, ecological risks, and potential sources of heavy metals (Pb, Cr, Cu, As, Cd, Zn, and Ni) in surface sediments and sediment cores were investigated in Dingzi Bay, Shandong Peninsula. The Igeo values and modified potential ecological risk index (MRI) indicated that Cd and As presented high environmental risks in the surface and sediment cores. The high concentration sites were mainly located in the middle and the mouth of the Dingzi Bay. The source identification indicated that most heavy metals in surface sediments originated from shipping and aquaculture, while As and Ni from industrial pollution. The correlation coefficients showed that high proportion of fine particle, TN, TOC, TP, and AVS in surface sediments could significantly elevate the bioavailability of most heavy metals.
Assuntos
Metais Pesados , Poluentes Químicos da Água , Sedimentos Geológicos , Baías , Poluentes Químicos da Água/análise , Cádmio , Monitoramento Ambiental , Metais Pesados/análise , Rios , China , Medição de RiscoRESUMO
Epilepsy is defined as spontaneous recurrent seizures in the brain. There is increasing evidence that inflammatory mediators and immune cells are involved in epileptic seizures. As more research is done on inflammatory factors and immune cells in epilepsy, new targets for the treatment of epilepsy will be revealed. The Janus kinase-signal transducer and transcriptional activator (JAKSTAT) signaling pathway is strongly associated with many immune and inflammatory diseases, At present, more and more studies have found that the JAK-STAT pathway is involved in the development and development of epilepsy, indicating the JAK-STAT pathway's potential promise as a target in epilepsy treatment. In this review, we discuss the composition, activation, and regulation of the JAK-STAT pathway and the relationship between the JAK-STAT pathway and epilepsy. In addition, we summarize the common clinical inhibitors of JAK and STAT that we would expect to be used in epilepsy treatment in the future.
Assuntos
Epilepsia , Transdução de Sinais , Humanos , Transdução de Sinais/fisiologia , Fatores de Transcrição STAT/metabolismo , Janus Quinases/metabolismo , Epilepsia/tratamento farmacológico , Encéfalo/metabolismoRESUMO
In apicomplexan parasites, the macroautophagy/autophagy machinery is repurposed to maintain the plastid-like organelle apicoplast. Previously, we showed that in Toxoplasma and Plasmodium, ATG12 interacts with ATG5 in a non-covalent manner, in contrast to the covalent interaction in most organisms. However, it remained unknown whether apicomplexan parasites have functional orthologs of ATG16L1, a protein that is essential for the function of the covalent ATG12-ATG5 complex in vivo in other organisms. Furthermore, the mechanism used by the autophagy machinery to maintain the apicoplast is unclear. We report that the ATG12-ATG5-ATG16L complex exists in Toxoplasma gondii (Tg). This complex is localized on isolated structures at the periphery of the apicoplast dependent on TgATG16L. Inducible depletion of TgATG12, TgATG5, or TgATG16L caused loss of the apicoplast and affected parasite growth. We found that a putative soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) protein, synaptosomal-associated protein 29 (TgSNAP29, Qbc SNARE), is required to maintain the apicoplast in T. gondii. TgSNAP29 depletion disrupted TgATG8 localization at the apicoplast. Additionally, we identified a putative ubiquitin-interacting motif-docking site (UDS) of TgATG8. Mutation of the UDS site abolished TgATG8 localization on the apicoplast but not lipidation. These findings suggest that the TgATG12-TgATG5-TgATG16L complex is required for biogenesis of the apicoplast, in which TgATG8 is translocated to the apicoplast via vesicles in a SNARE -dependent manner in T. gondii.Abbreviations: AID: auxin-inducible degron; CCD: coiled-coil domain; HFF: human foreskin fibroblast; IAA: indole-3-acetic acid; LAP: LC3-associated phagocytosis; NAA: 1-naphthaleneacetic acid; PtdIns3P: phosphatidylinositol-3-phosphate; SNARE: soluble N-ethylmaleimide sensitive factor attachment protein receptor; UDS: ubiquitin-interacting motif-docking site; UIM: ubiquitin-interacting motif.
Assuntos
Apicoplastos , Parasitos , Toxoplasma , Animais , Humanos , Toxoplasma/genética , Toxoplasma/metabolismo , Apicoplastos/genética , Apicoplastos/metabolismo , Etilmaleimida/metabolismo , Autofagia , Ubiquitinas/metabolismo , Proteínas de Protozoários/genética , Proteína 12 Relacionada à Autofagia/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE , Proteína 5 Relacionada à Autofagia/metabolismoRESUMO
The environment behaviors of sulfur and heavy metals in sediments are closely related to sediment aging in mariculture area. In this study, the distributions and ecological risks of reduced inorganic sulfur (RIS) and heavy metals were investigated, along with the relationships between different occurrences of RIS and heavy metals. The results indicated that the adequate organic matter in mariculture sediments significantly enhanced the accumulation of acid volatile sulfur (AVS) compared to the control area. In shellfish farming area, biological sedimentation contributed to accumulation of AVS. The chromium (II)-reducible sulfur (CRS) was the main component of RIS in mariculture area. The environmental risks of heavy metals in mariculture area presented low levels. Principal component analysis (PCA) showed that distribution of Cu closely related to mariculture activities compared to other heavy metals. For ecological risks of heavy metals, the ratio of ∑(acid-soluble fraction (F1) + reducible fraction (F2) + oxidizable fraction (F3))/AVS was the appropriate index rather than conventional simultaneous extraction of heavy metals (SEM)/AVS, because SEM/AVS would overestimate the toxicity of heavy metals. AVS/RIS ratios significantly positively correlated with Pb (F2/(F1 + F2 + F3 + residual fraction (F4)), F2/∑F), Pb (F3/∑F), and Zn (F3/∑F), while significantly negatively correlated with Pb (F4/∑F) and Cu (F1/∑F). These results indicated that the accumulation of AVS during the mariculture process was conducive to the formation of F2 and F3 of Pb, and F3 of Zn, conversely to the formation for F4 of Pb and F1 of Cu, because it was opposite to the accumulation of CRS.
Assuntos
Metais Pesados , Poluentes Químicos da Água , China , Cromo/análise , Monitoramento Ambiental/métodos , Sedimentos Geológicos/análise , Chumbo/análise , Metais Pesados/análise , Medição de Risco , Enxofre/análise , Poluentes Químicos da Água/análiseRESUMO
The development of highly conductive biofilms is a key strategy to enhance antibiotic removal in bioelectrochemical systems (BESs) with biocathodes. In this study, Au nanoparticles (Au-NPs) were in situ fabricated in a biocathode (Au biocathode) to enhance the removal of chloramphenicol (CAP) in BESs. The concentration of Au(III) was determined to be 5 mg/L. CAP was effectively removed in the BES containing a Au biocathode with a removal percentage of 94.0% within 48 h; this result was 1.8-fold greater than that obtained using a biocathode without Au-NPs (51.7%). The Au-NPs significantly reduced the charge transfer resistance and promoted the electrochemical activity of the biocathode. In addition, the Au biocathode showed a specifical enrichment of Dokdonella, Bosea, Achromobacter, Bacteroides and Petrimonas, all of which are associated with electron transfer and contaminant degradation. This study provides a new strategy for enhancing CAP removal in BESs through a simple and eco-friendly electrode design.
Assuntos
CloranfenicolRESUMO
BACKGROUND: Cerebrotendinous xanthomatosis (CTX) is a rare autosomal recessive metabolic disease caused by mutations in CYP27A1. It has a low incidence rate, insidious onset, and diverse clinical manifestations. It can be easily misdiagnosed and can go unrecognized by clinicians, leading to delayed treatment and worsened patient outcomes. CASE SUMMARY: A 38-year-old male was admitted to our hospital with a history of unabating unstable posture and difficulty in walking for more than 30 years. Subsequently based on the patient's medical history, clinical symptoms, magnetic resonance imaging and gene sequencing results, he was finally diagnosed with CTX. Due to the low incidence rate of the disease, clinicians have insufficient knowledge of it, which makes the diagnosis process more tortuous and prolongs the diagnosis time. CONCLUSION: Prompt diagnosis and treatment of CTX improve patient outcomes.
RESUMO
Migraine is a highly prevalent neurological disorder characterized by recurrent, unilateral, or bilateral throbbing severe headaches. Currently, there are extremely rare cases of migraine-induced dystonia. A 52-year-old woman was admitted for intractable migraine for about 5 days and walking difficulties for 1 day. The symptom of an inability to walk appeared on the fourth day of the headache attack lasting for 1 day and resolved on its own as the headache subsided. The same symptoms appeared once 6 years ago. Neurological examination, brain Magnetic resonance imaging (MRI), laboratory tests of blood and cerebrospinal fluid (CSF) were normal. The contrast transcranial Doppler echocardiography (cTCD) revealed a latent and massive right-to-left shunt (RLS) after the release of the Valsalva maneuver. The patient was diagnosed with migraine-induced dystonia of the lower limbs. Oral ibuprofen and flunarizine and avoidance of increased chest pressure maneuvers were used for treatment and prevention. During the 6-month follow-up, the patient was free of headaches and walking difficulties. Our study reported a rare case of migraine-induced dystonia of the lower extremities.
RESUMO
PURPOSE: Malondialdehyde (MDA) is an oxidative stress marker that determines the impact of oxidation on MDA levels in patients with epilepsy (PWE) and healthy controls. METHODS: A meta-analysis was performed on 15 published studies. A total of 559 PWE and 853 healthy controls were included to evaluate the MDA levels in erythrocytes, serum, and plasma, respectively. RESULTS: Meta-analysis showed that MDA levels were significantly higher in PWE than in healthy controls. Moreover, the meta-analysis demonstrated that MDA levels were increased in three subgroups of serum, plasma, and red blood cells from epileptic patients compared with the control group. Differentiating the subgroups according to the proportion of female patients, region, and MDA detection method showed that MDA levels in epileptic patients were higher than in healthy controls. In addition, MDA levels were significantly higher in the Asian subgroup than in the non-Asian subgroup. There was no potential publication bias. The age of the patients, the proportion of female patients, the region, and methods for measuring MDA of the included studies did not cause heterogeneity. CONCLUSION: Our results showed increased MDA levels in erythrocytes, serum, and plasma in PWE, which may be an indicator of oxidative damage in epilepsy. This is the first meta-analysis of circulating MDA levels in PWE and healthy controls.
Assuntos
Epilepsia , Biomarcadores , Feminino , Humanos , Malondialdeído , Estresse OxidativoRESUMO
Objectives: The present study explored the clinical characteristics and prognostic factors of epilepsy in patients with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS). Methods: Thirty-four MELAS patients were included in the present study. They were diagnosed by clinical characteristics, genetic testing, muscle biopsy, and retrospective analysis of other clinical data. The patients were divided into three groups according to the effects of treatment after at least 2 years of follow-up. Results: Epilepsy was more common in male MELAS patients than in females (20/14). The age of onset ranged from 0.5 to 57 years, with an average of 22.6 years. Patients with epilepsy and MELAS had various forms of seizures. Focal seizures were the most common type affecting 58.82% of patients, and some patients had multiple types of seizures. The abnormal EEG waves were mainly concentrated in the occipital (69.57%), frontal (65.22%) and temporal lobes (47.83%). Overall, the prognosis of patients with epilepsy and MELAS was poor. Poor prognosis was associated with brain atrophy (P = 0.026), status epilepticus (P < 0.001), and use of anti-seizure medications with high mitochondrial toxicity (P = 0.015). Interpretation: Avoiding the application of anti-seizure medications with high mitochondrial toxicity, controlling seizures more actively and effectively, and delaying the occurrence and progression of brain atrophy as much as possible are particularly important to improve the prognosis of patients with MELAS and epilepsy.
RESUMO
To develop an efficient photofermentative process capable of higher rate biohydrogen production using carbon components of lignocellulosic hydrolysate, a desired carbon substrate by mixing xylose with glucose was formulated. Effects of crucial process parameters affecting cellular biochemical reaction of hydrogen by photosynthetic bacteria (PSB), i.e., variation in initial concentration of total carbon, glucose content in initial carbon substrate, and light intensity, were experimentally investigated using response surface methodology (RSM) with a Box-Behnken design (BBD). Hydrogen production rate (HPR) in the maximum value of 30.6 mL h-1 L-1 was attained under conditions of 39 mM initial concentration of total carbon, 59% (mol/mol) glucose content in initial carbon substrate, and 12.6 W m-2 light intensity at light wavelength of 590 nm. Synergic effects of metabolizing such a well-formulated carbon substrate for sustaining the active microbial synthesis to sufficiently accumulate biomass in bioreactor, as well as stimulating enzyme activity of nitrogenase for the higher rate biohydrogen production, were attributed to this carbon substrate that can enable PSB to maintain the relatively consistent microenvironment in suitable culture pH condition during the optimized photofermentative process.
Assuntos
Glucose/metabolismo , Hidrogênio/metabolismo , Fotossíntese , Rodopseudomonas/crescimento & desenvolvimento , Xilose/metabolismo , Glucose/farmacologia , Xilose/farmacologiaRESUMO
Accurate source identification is the first step of pollution control in environmental emergency management, especially in marine pollution events. Dissolved organic matter (DOM) absorption and fluorescence (excitation-emission matrices, EEMs) analyses were applied to trace contaminant sources for a pollution event that occurred along the coast of Laizhou Bay, Bohai Sea. Parallel factor analysis (PARAFAC) of the EEMs identified four fluorescent components: terrestrial humic-like (C1), tryptophan-like (C2), and a mixture of terrestrial and marine humic-like (C3) and tyrosine-like (C4) components. The relationships among C1 to C4 and quality indices indicated that the DOM originated from terrestrial input and biological activity. The EEMs-PARAFAC results accompanied by the optical characteristics of DOM and fingerprinting demonstrated that the marine pollution event occurred was from enterprise emissions. The numerical simulation confirmed the reliability of EEMs-PARAFAC modeling for DOM fingerprinting of pollution sources in polluted regions. This study provided a feasible method for source recognition in marine pollution events.
Assuntos
Matéria Orgânica Dissolvida , Substâncias Húmicas , Análise Fatorial , Estudos de Viabilidade , Substâncias Húmicas/análise , Reprodutibilidade dos Testes , Espectrometria de FluorescênciaRESUMO
Phosphorus (P) is an essential biogenic element in aquatic ecosystem, and its speciation in sediment may influence the water quality. The composition of P in suspended particular matters (SPM) and sediments were analyzed. Metal ions bonding PO43- and chelating organic P (OP) were explored by Visual MINTEQ simulation and infrared spectroscopy. Inorganic P (IP) mainly comprises orthophosphate and pyrophosphate in SPM. OP mainly includes α-glycerol phosphate, ß-Gly, monophosphate, and mononucleotides from aquatic plants in SPM. Cyclotella, Nitzschia, Amphiprore, and terrestrial C3 plants are the main source of aquatic plants in JH, while they are from Oscillatoria and Merismopedia in JL. These aquatic plants directly determine whether OP or IP is taken to surface sediments during the setting of SPM. The bonding between PO43- and Ca is more preferential than Al and Fe, so the excess PO43- makes Ca compounds bonding IP (Ca-IP) and Al/Fe/Mn (hydr) oxides associated IP (Al/Fe/Mn-IP) dominant, but limited PO43- preferentially contributes more Ca-IP. Metal ions in saline water can firmly cheat with OP via P-OH and/or P=O groups to promote the burial of OP.
Assuntos
Rios , Poluentes Químicos da Água/análise , China , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Fósforo/análise , SalinidadeRESUMO
The release of phosphorus (P) from benthic sediments can affect the P content, nutrient status and quality of overlying waters in coastal ecosystem. This study was carried out to investigate the influence of oxidation-reduction potential (ORP) and sulfide on P release from sediments in the coastal estuary of the Yuniao River, China. The results showed that ferric iron-bound P was the main P burial phase in the sediments. The P concentration in overlying water increased with ORP decrease and sulfide increase, displaying a significant linear correlation with the ORP and sulfide concentration. The results indicate that decreased ORP may elevate the zero equilibrium phosphorus concentration, enhancing the capability of P release. And increased sulfide may react or capture reactive iron in sediments, reducing the P adsorption capacity and accelerating P release. Therefore, the control of ORP and sulfide production is important in the sink/source conversion of P in coastal sediments.