RESUMO
Tissue-resident memory T cells (TRM cells) are critical for cellular immunity to respiratory pathogens and reside in both the airways and the interstitium. In the present study, we found that the airway environment drove transcriptional and epigenetic changes that specifically regulated the cytolytic functions of airway TRM cells and promoted apoptosis due to amino acid starvation and activation of the integrated stress response. Comparison of airway TRM cells and splenic effector-memory T cells transferred into the airways indicated that the environment was necessary to activate these pathways, but did not induce TRM cell lineage reprogramming. Importantly, activation of the integrated stress response was reversed in airway TRM cells placed in a nutrient-rich environment. Our data defined the genetic programs of distinct lung TRM cell populations and show that local environmental cues altered airway TRM cells to limit cytolytic function and promote cell death, which ultimately leads to fewer TRM cells in the lung.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Reprogramação Celular/genética , Reprogramação Celular/imunologia , Epigênese Genética/imunologia , Memória Imunológica/genética , Pulmão/imunologia , Animais , Apoptose/imunologia , Linfócitos T CD8-Positivos/citologia , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Microambiente Celular/genética , Microambiente Celular/imunologia , Feminino , Pulmão/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/patologiaRESUMO
The high degree of conservation of CD8 T cell epitopes of influenza A virus (IAV) may allow for the development of T cell-inducing vaccines that provide protection across different strains and subtypes. This conservation is not fully explained by functional constraint, since an additional mutation(s) can compensate for the replicative fitness loss of IAV escape variants. Here, we propose three additional mechanisms that contribute to the conservation of CD8 T cell epitopes of IAV. First, influenza-specific CD8 T cells may protect predominantly against severe pathology rather than infection and may have only a modest effect on transmission. Second, polymorphism of the human major histocompatibility complex class I (MHC-I) gene restricts the advantage of an escape variant to only a small fraction of the human population who carry the relevant MHC-I alleles. Finally, infection with CD8 T cell escape variants may result in a compensatory increase in the responses to other epitopes of IAV. We use a combination of population genetics and epidemiological models to examine how the interplay between these mechanisms affects the rate of invasion of IAV escape variants. We conclude that for a wide range of biologically reasonable parameters, the invasion of an escape variant virus will be slow, with a timescale of a decade or more. The results suggest T cell-inducing vaccines do not engender the rapid evolution of IAV. Finally, we identify key parameters whose measurement will allow for more accurate quantification of the long-term effectiveness and impact of universal T cell-inducing influenza vaccines.IMPORTANCE Universal influenza vaccines against the conserved epitopes of influenza A virus have been proposed to minimize the burden of seasonal outbreaks and prepare for the pandemics. However, it is not clear how rapidly T cell-inducing vaccines will select for viruses that escape these T cell responses. Our mathematical models explore the factors that contribute to the conservation of CD8 T cell epitopes and how rapidly the virus will evolve in response to T cell-inducing vaccines. We identify the key biological parameters to be measured and questions that need to be addressed in future studies.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Vírus da Influenza A/imunologia , Influenza Humana/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Vacinas contra Influenza/imunologia , PandemiasRESUMO
Although influenza virus infection remains a concerning disease for public health, the roles of individual cytokines during the immune response to influenza infection are not fully understood. We have identified IL-36γ as a key mediator of immune protection during both high- and low-pathogenesis influenza infection. Il36g mRNA is upregulated in the lung following influenza infection, and mice lacking IL-36γ have greatly increased morbidity and mortality upon infection with either H1N1 or H3N2 influenza. The increased severity of influenza infection in IL-36γ-knockout (KO) mice is associated with increased viral titers, higher levels of proinflammatory cytokines early in infection, and more diffuse pathologic conditions late in the disease course. Interestingly, the increased severity of disease in IL-36γ-KO mice correlates with a rapid loss of alveolar macrophages following infection. We find that the alveolar macrophages from naive IL-36γ-KO mice have higher expression of M2-like surface markers compared with wild-type (WT) mice and show increased apoptosis within 24 h of infection. Finally, transfer of WT alveolar macrophages to IL-36γ-KO mice restores protection against lethal influenza challenge to levels observed in WT mice. Together, these data identify a critical role for IL-36γ in immunity against influenza virus and demonstrate the importance of IL-36γ signaling for alveolar macrophage survival during infection.
Assuntos
Vírus da Influenza A Subtipo H1N1/fisiologia , Vírus da Influenza A Subtipo H3N2/fisiologia , Influenza Humana/imunologia , Interleucina-1/metabolismo , Pulmão/patologia , Macrófagos Alveolares/fisiologia , Infecções por Orthomyxoviridae/imunologia , Transferência Adotiva , Animais , Sobrevivência Celular , Células Cultivadas , Humanos , Interleucina-1/genética , Macrófagos Alveolares/transplante , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regulação para Cima , Replicação ViralRESUMO
Despite their importance for immunity against sexually transmitted infections, the composition of female reproductive tract (FRT) memory T-cell populations in response to changes within the local tissue environment under the regulation of the menstrual cycle remains poorly defined. Here, we show that in humans and pig-tailed macaques, the cycle determines distinct clusters of differentiation 4 T-cell surveillance behaviors by subsets corresponding to migratory memory (TMM) and resident memory T cells. TMM displays tissue-itinerant trafficking characteristics, restricted distribution within the FRT microenvironment, and distinct effector responses to infection. Gene pathway analysis by RNA sequencing identified TMM-specific enrichment of genes involved in hormonal regulation and inflammatory responses. FRT T-cell subset fluctuations were discovered that synchronized to cycle-driven CCR5 signaling. Notably, oral administration of a CCR5 antagonist drug blocked TMM trafficking. Taken together, this study provides novel insights into the dynamic nature of FRT memory CD4 T cells and identifies the menstrual cycle as a key regulator of immune surveillance at the site of STI pathogen exposure.
Assuntos
Linfócitos T CD4-Positivos , Genitália Feminina , Ciclo Menstrual , Receptores CCR5 , Transdução de Sinais , Feminino , Humanos , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Genitália Feminina/imunologia , Genitália Feminina/metabolismo , Ciclo Menstrual/imunologia , Ciclo Menstrual/fisiologia , Receptores CCR5/genética , Receptores CCR5/metabolismo , Subpopulações de Linfócitos T/imunologia , Macaca nemestrina/imunologia , Memória Imunológica , Microambiente Celular/imunologia , Microambiente Celular/fisiologia , Antagonistas dos Receptores CCR5/farmacologiaRESUMO
We explored the association between violence victimization and increased risk for acquiring sexually transmitted infections (STIs) in women by measuring cellular immune barrier properties from the female reproductive tract. STI-negative participants reporting repeated prior victimization occurrences through the lifetime trauma and victimization history (LTVH) instrument were more likely to exhibit alterations in barrier homeostasis and the composition of critical immune mediators irrespective of demographic parameters or presence of bacterial vaginosis. By combining cellular data with mixed-effect linear modeling, we uncovered differences in local T cells, MHCII+ antigen-presenting cells, and epithelial cells indicative of altered trafficking behavior, increased immunosuppressive function, and decreased barrier integrity at sites of STI exposure that correlate most strongly with LTVH score. These data evidence a biological link between a history of violence victimization and risk of STI acquisition through immune dysregulation in the female reproductive tract.
Assuntos
Vítimas de Crime , Infecções Sexualmente Transmissíveis/imunologia , Violência , Adolescente , Adulto , Biomarcadores , Adesão Celular , Movimento Celular , Feminino , Infecções por HIV , Humanos , Estudos Longitudinais , Pessoa de Meia-Idade , Linfócitos T , Vaginose Bacteriana/imunologia , Adulto JovemRESUMO
The largest epidemic of avian influenza (AI) in history attacked poultry and wild birds throughout Taiwan starting January 6, 2015. This study analyzed surveillance results, epidemiologic characteristics, and viral sequences by using government-released information, with the intention to provide recommendations to minimize future pandemic influenza. The H5 clade 2.3.4.4 highly pathogenic AI viruses (HPAIVs) had not been detected in Taiwan before 2015. During this epidemic, four types of etiologic agents were identified: the three novel subtypes H5N2, H5N8, and H5N3 clade 2.3.4.4 HPAIVs and one endemic chicken H5N2 subtype (Mexican-like lineage) of low pathogenic AI viruses. Cocirculation of mixed subtypes also occurred, with H5N2 clade 2.3.4.4 HPAIVs accompanied by the H5N8 and H5N3 subtypes or old H5N2 viruses in the same farm. More than 90% of domestic geese died from this AI epidemic; geese were affected the most at the early outbreaks. The epidemic peaked in mid-January for all three novel H5 subtypes. Spatial epidemiology found that most affected areas were located in southwestern coastal areas. In terrestrial poultry (mostly chickens), different geographic distributions of AI virus subtypes were detected, with hot spots of H5N2 clade 2.3.4.4 vs. past-endemic old H5N2 viruses in Changhwa (P = 0.03) and Yunlin (P = 0.007) counties, respectively, of central Taiwan. Phylogenetic and sequence analyses of all the early 10 Taiwan H5 clade 2.3.4.4 isolates covering the three subtypes showed that they were very different from the HA of the past local H5 viruses from domestic ducks (75%-80%) and chickens (70%-75%). However, they had the highest sequence identity percentages (99.53%-100%), with the HA of A/crane/Kagoshima/KU13/2014(H5N8) isolated on December 7, 2014, in Japan being higher than those of recent American and Korean H5 HPAIVs [A/Northern pintail/Washington/40964/2014 (H5N2) and A/gyrfalcon/Washington/41088-6/2014 (H5N8): 99.02%-99.54% and A/Baikal teal/Korea/Donglim3/2014 (H5N8): 98.61%-99.08%], implying a likely common ancestor of these H5 clade 2.3.4.4 viruses. The multiple subtypes of H5 clade 2.3.4.4 HPAIVs imply high viral reassortment. We recommend establishing an integrated surveillance system, involving clinical, virologic, and serologic surveillance in poultry and wild birds, swine and other mammals prevalent on multiple-animal mixed-type traditional farms, and high-risk human populations, as a crucially important step to minimize future pandemic influenza.
Assuntos
Vírus da Influenza A/isolamento & purificação , Influenza Aviária/epidemiologia , Doenças das Aves Domésticas/epidemiologia , Animais , Animais Selvagens/virologia , Galinhas , Surtos de Doenças , Patos , Gansos , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Influenza Aviária/virologia , Filogenia , Doenças das Aves Domésticas/virologia , Taiwan/epidemiologiaRESUMO
School children may transmit pathogens with cluster cases occurring on campuses and in families. In response to the 2009 influenza A (H1N1) pandemic, Taipei City Government officials developed a School-based Infectious Disease Syndromic Surveillance System (SID-SSS). Teachers and nurses from preschools to universities in all 12 districts within Taipei are required to daily report cases of symptomatic children or sick leave requests through the SID-SSS. The pre-diagnosis at schools is submitted firstly as common pediatric disease syndrome-groups and re-submitted after confirmation by physicians. We retrieved these data from January 2010 to August 2011 for spatio-temporal analysis and evaluated the temporal trends with cases obtained from both the Emergency Department-based Syndromic Surveillance System (ED-SSS) and the Longitudinal Health Insurance Database 2005 (LHID2005). Through the SID-SSS, enterovirus-like illness (EVI) and influenza-like illness (ILI) were the two most reported syndrome groups (77.6% and 15.8% among a total of 19,334 cases, respectively). The pre-diagnosis judgments made by school teachers and nurses showed high consistency with physicians' clinical diagnoses for EVI (97.8%) and ILI (98.9%). Most importantly, the SID-SSS had better timeliness with earlier peaks of EVI and ILI than those in the ED-SSS. Furthermore, both of the syndrome groups in these two surveillance systems had the best correlation reaching 0.98 and 0.95, respectively (p<0.01). Spatio-temporal analysis observed the patterns of EVI and ILI both diffuse from the northern suburban districts to central Taipei, with ILI spreading faster. This novel system can identify early suspected cases of two important pediatric infections occurring at schools, and clusters from schools/families. It was also cost-effective (95.5% of the operation cost reduced and 59.7% processing time saved). The timely surveillance of mild EVI and ILI cases integrated with spatial analysis may help public health decision-makers with where to target for enhancing surveillance and prevention measures to minimize severe cases.
Assuntos
Diagnóstico Precoce , Infecções por Enterovirus/diagnóstico , Influenza Humana/diagnóstico , Vigilância da População/métodos , Análise Custo-Benefício , Diarreia/diagnóstico , Diarreia/epidemiologia , Surtos de Doenças/economia , Surtos de Doenças/prevenção & controle , Enterovirus/fisiologia , Infecções por Enterovirus/epidemiologia , Infecções por Enterovirus/virologia , Docentes/estatística & dados numéricos , Geografia , Interações Hospedeiro-Patógeno , Humanos , Incidência , Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Humana/epidemiologia , Influenza Humana/virologia , Enfermeiras e Enfermeiros/estatística & dados numéricos , Instituições Acadêmicas/estatística & dados numéricos , Estações do Ano , Análise Espaço-Temporal , Síndrome , Taiwan/epidemiologia , Universidades/estatística & dados numéricosRESUMO
The 2009 influenza pandemic provided an opportunity to observe dynamic changes of the hemagglutinin (HA) and neuraminidase (NA) of pH1N1 strains that spread in two metropolitan areas--Taipei and Kaohsiung. We observed cumulative increases of amino acid substitutions of both HA and NA that were higher in the post-peak than in the pre-peak period of the epidemic. About 14.94% and 3.44% of 174 isolates had one and two amino acids changes, respective, in the four antigenic sites. One unique adaptive mutation of HA2 (E374K) was first detected three weeks before the epidemic peak. This mutation evolved through the epidemic, and finally emerged as the major circulated strain, with significantly higher frequency in the post-peak period than in the pre-peak (64.65% vs 9.28%, p<0.0001). E374K persisted until ten months post-nationwide vaccination without further antigenic changes (e.g. prior to the highest selective pressure). In public health measures, the epidemic peaked at seven weeks after oseltamivir treatment was initiated. The emerging E374K mutants spread before the first peak of school class suspension, extended their survival in high-density population areas before vaccination, dominated in the second wave of class suspension, and were fixed as herd immunity developed. The tempo-spatial spreading of E374K mutants was more concentrated during the post-peak (pâ=â0.000004) in seven districts with higher spatial clusters (p<0.001). This is the first study examining viral changes during the naïve phase of a pandemic of influenza through integrated virological/serological/clinical surveillance, tempo-spatial analysis, and intervention policies. The vaccination increased the percentage of E374K mutants (22.86% vs 72.34%, p<0.001) and significantly elevated the frequency of mutations in Sa antigenic site (2.36% vs 23.40%, p<0.001). Future pre-vaccination public health efforts should monitor amino acids of HA and NA of pandemic influenza viruses isolated at exponential and peak phases in areas with high cluster cases.