Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Cell Mol Med ; 25(12): 5729-5743, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33949118

RESUMO

Cyclosporine A (CsA) is an immunosuppressor widely used for the prevention of acute rejection during solid organ transplantation. However, severe nephrotoxicity has substantially limited its long-term usage. Recently, an impaired autophagy pathway was suggested to be involved in the pathogenesis of chronic CsA nephrotoxicity. However, the underlying mechanisms of CsA-induced autophagy blockade in tubular cells remain unclear. In the present study, we observed that CsA suppressed the activation and expression of transcription factor EB (TFEB) by increasing the activation of mTOR, in turn promoting lysosomal dysfunction and autophagy flux blockade in tubular epithelial cells (TECs) in vivo and in vitro. Restoration of TFEB activation by Torin1-mediated mTOR inhibition significantly improved lysosomal function and rescued autophagy pathway activity, suppressing TEC injury. In summary, targeting TFEB-mediated autophagy flux represents a potential therapeutic strategy for CsA-induced nephrotoxicity.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Ciclosporina/toxicidade , Células Epiteliais/patologia , Túbulos Renais/patologia , Lisossomos/patologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Imunossupressores/toxicidade , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Serina-Treonina Quinases TOR/genética
2.
Med Sci Monit ; 26: e922673, 2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32555132

RESUMO

BACKGROUND Cell cycle arrest and autophagy have been demonstrated to be involved in various transforming growth factor (TGF)-ß-mediated phenotype alterations of tubular epithelial cells (TECs) and tubulointerstitial fibrosis. But the relationship between cell cycle arrest and the autophagy induced by TGF-ß has not been explored well. MATERIAL AND METHODS The effects of autophagy inhibition on TGF-ß-induced cell cycle arrest in TECs were explored in vitro. Human kidney-2 (HK-2) cells were stimulated by TGF-ß with or without a combined treatment of autophagy inhibitor chloroquine (CQ) or bafilomycin A1 (Baf). RESULTS Autophagy inhibition by CQ or Baf promotes the suppression of growth in TGF-ß-treated HK-2 cells, as detected by the Cell Counting Kit-8 (CCK-8) method. In addition, CQ or Baf stimulation enhances G1 arrest in TGF-ß treated HK-2 cells, as investigated using propidium iodide (PI) staining and flow cytometry, which was further confirmed by a decrease in the expression of phosphorylated retinoblastoma protein (p-RB) and cyclin-dependent kinase 4 (CDK4). The upregulation of p21 induced by CQ or Baf may mediate an enhanced G1 arrest in TGF-ß treated HK-2 cells. Western blot analysis showed that TGF-ß-induced expression of extracellular matrix fibronectin was notably upregulated in the presence of autophagy inhibitors. CONCLUSIONS Inhibition of autophagy sensitizes the TECs to G1 arrest and proliferation suppression induced by TGF-ß that contributes to the induction of tubulointerstitial fibrosis.


Assuntos
Autofagia/efeitos dos fármacos , Cloroquina/farmacologia , Inibidores Enzimáticos/farmacologia , Células Epiteliais/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Macrolídeos/farmacologia , Insuficiência Renal Crônica/patologia , Fator de Crescimento Transformador beta/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fibronectinas/efeitos dos fármacos , Fibronectinas/metabolismo , Fibrose , Humanos , Técnicas In Vitro , Túbulos Renais/citologia , Insuficiência Renal Crônica/metabolismo , Proteína do Retinoblastoma/efeitos dos fármacos , Proteína do Retinoblastoma/metabolismo
3.
Med Sci Monit ; 24: 6882-6891, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30265659

RESUMO

BACKGROUND The aim of this study was to determine whether senescence in renal glomeruli is involved in lupus nephritis (LN); the expression of senescence-associated ß-galactosidase (SA-ß-Gal) and its association with glomerular lesions were investigated in a mouse model of LN. MATERIAL AND METHODS Eighteen MRL/lpr mice with severe proteinuria were randomly divided into 2 equal groups and intraperitoneally injected with dexamethasone (DEX) or saline; 4 age-matched mice with mild proteinuria served as controls. Serum creatinine and urinary protein levels were analyzed, and kidney histological changes were observed by periodic acid-Schiff and Sirius Red staining. SA-ß-Gal was detected via histochemistry. Glomerular expression of collagen IV, α-SMA, and nephrin was analyzed by immunohistochemistry, and glomerular complement C3 deposition was tested by immunofluorescence. The relationships between SA-ß-Gal expression and renal function or glomerular lesion markers were determined by Spearman's correlation analysis. RESULTS Mice with severe proteinuria exhibited glomerular segmental sclerosis and endothelial cell proliferation. DEX administration suppressed these lesions but had no significant effect on 24-hour urinary protein levels. The elevated glomerular expression of SA-ß-Gal in proteinuric mice was attenuated by DEX treatment. In addition, DEX treatment markedly downregulated glomerular C3 deposition and collagen IV and α-SMA expression, while significantly increasing nephrin expression. Furthermore, SA-ß-Gal expression was positively correlated with urinary protein levels and expression of α-SMA. CONCLUSIONS Accelerated senescence of glomerular cells may contribute to glomerular injury in LN.


Assuntos
Glomérulos Renais/patologia , Nefrite Lúpica/patologia , Actinas/sangue , Animais , Senescência Celular/fisiologia , Colágeno Tipo IV/sangue , Creatinina/sangue , Dexametasona/farmacologia , Modelos Animais de Doenças , Feminino , Imuno-Histoquímica , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/metabolismo , Nefrite Lúpica/sangue , Nefrite Lúpica/induzido quimicamente , Nefrite Lúpica/metabolismo , Proteínas de Membrana/sangue , Camundongos , Camundongos Endogâmicos MRL lpr , Proteinúria/patologia , beta-Galactosidase/metabolismo
4.
World J Cardiol ; 16(3): 161-167, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38576523

RESUMO

BACKGROUND: Patients with tetralogy of Fallot (TOF) often have arrhythmias, commonly being atrial fibrillation (AF). Radiofrequency ablation is an effective treatment for AF and does not usually cause severe postoperative hypoxemia, but the risk of complications may increase in patients with conditions such as TOF. CASE SUMMARY: We report a young male patient with a history of TOF repair who developed severe hypoxemia after radiofrequency ablation for AF and was ultimately confirmed to have a new right-to-left shunt. The patient subsequently underwent atrial septal occlusion and eventually recovered. CONCLUSION: Radiofrequency ablation may cause iatrogenic atrial septal injury; thus possible complications should be predicted in order to ensure successful treatment and patient safety.

5.
Front Physiol ; 13: 832772, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360248

RESUMO

Podocytopathy is the most common feature of glomerular disorder characterized by podocyte injury- or dysfunction-induced excessive proteinuria, which ultimately develops into glomerulosclerosis and results in persistent loss of renal function. Due to the lack of self-renewal ability of podocytes, mild podocyte depletion triggers replacement and repair processes mostly driven by stem cells or resident parietal epithelial cells (PECs). In contrast, when podocyte recovery fails, activated PECs contribute to the establishment of glomerular lesions. Increasing evidence suggests that PECs, more than just bystanders, have a crucial role in various podocytopathies, including minimal change disease, focal segmental glomerulosclerosis, membranous nephropathy, diabetic nephropathy, IgA nephropathy, and lupus podocytopathy. In this review, we attempt to dissect the diverse role of PECs in the pathogenesis of podocytopathy based on currently available information.

6.
Arthritis Res Ther ; 24(1): 6, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34980245

RESUMO

BACKGROUND: Hydroxychloroquine (HCQ) has been recommended as a basic treatment for lupus nephritis (LN) during this decade based on its ability to improve LN-related renal immune-mediated inflammatory lesions. As a classical lysosomal inhibitor, HCQ may inhibit lysosomal degradation and disrupt protective autophagy in proximal tubular epithelial cells (PTECs). Therefore, the final renal effects of HCQ on LN need to be clarified. METHOD: HCQ was administered on spontaneous female MRL/lpr LN mice with severe proteinuria daily for 4 weeks. Moreover, the MRL/lpr mice with proteinuric LN were subjected to cisplatin-induced or unilateral ischemia/reperfusion (I/R)-induced acute kidney injury (AKI) after 2 weeks of HCQ preadministration. RESULTS: As expected, HCQ treatment increased the survival ratio and downregulated the levels of serum creatinine in the mice with LN, ameliorated renal lesions, and inhibited renal interstitial inflammation. Unexpectedly, HCQ preadministration significantly increased susceptibility to and delayed the recovery of AKI complicated by LN, as demonstrated by an increase in PTEC apoptosis and expression of the tubular injury marker KIM-1 as well as the retardation of PTEC replenishment. HCQ preadministration suppressed the proliferation of PTECs by arresting cells in G1/S phase and upregulated the expression of cell cycle inhibitors. Furthermore, HCQ preadministration disrupted the PTEC autophagy-lysosomal pathway and accelerated PTEC senescence. CONCLUSION: HCQ treatment may increase susceptibility and delay the recovery of AKI complicated by LN despite its ability to improve LN-related renal immune-mediated inflammatory lesions. The probable mechanism involves accelerated apoptosis and inhibited proliferation of PTECs via autophagy-lysosomal pathway disruption and senescence promotion.


Assuntos
Injúria Renal Aguda , Nefrite Lúpica , Injúria Renal Aguda/induzido quimicamente , Animais , Feminino , Hidroxicloroquina/farmacologia , Rim/patologia , Camundongos , Camundongos Endogâmicos MRL lpr
7.
Eur J Med Res ; 27(1): 176, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36088368

RESUMO

Hyperuricemia can induce acute and chronic kidney damage, but the pathological mechanism remains unclear. The potential role of AMP-activated protein kinase (AMPK) α2 in hyperuricemia-induced renal injury was investigated in this study. Acute and chronic hyperuricemic nephropathy was induced by administering intraperitoneal injections of uric acid and oxonic acid to AMPK α2 knockout and wild-type mice. Changes in renal function, histopathology, inflammatory cell infiltration, renal interstitial fibrosis, and urate deposition were analyzed. In both acute and chronic hyperuricemic nephropathy mouse models, knockout of AMPK α2 significantly reduced serum creatinine levels and renal pathological changes. The tubular expression of kidney injury molecule-1 was also reduced in hyperuricemic nephropathy mice deficient in AMPK α2. In addition, knockout of AMPK α2 significantly suppressed the infiltration of renal macrophages and progression of renal interstitial fibrosis in mice with chronic hyperuricemic nephropathy. Knockout of AMPK α2 reduced renal urate crystal deposition, probably through increasing the expression of the uric acid transporter, multidrug resistance protein 4. In summary, AMPK α2 is involved in acute and chronic hyperuricemia-induced kidney injury and may be associated with increased urate crystal deposition in the kidney.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Hiperuricemia , Nefropatias , Falência Renal Crônica , Proteínas Quinases Ativadas por AMP/genética , Animais , Modelos Animais de Doenças , Fibrose , Hiperuricemia/induzido quimicamente , Hiperuricemia/genética , Rim/patologia , Nefropatias/genética , Nefropatias/metabolismo , Camundongos , Camundongos Knockout , Ácido Úrico/efeitos adversos , Ácido Úrico/metabolismo
8.
Kidney Dis (Basel) ; 7(4): 254-267, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34395541

RESUMO

BACKGROUND: Macroautophagy (autophagy) is a cellular recycling process involving the destruction of damaged organelles and proteins in intracellular lysosomes for efficient nutrient reuse. SUMMARY: Impairment of the autophagy-lysosome pathway is tightly associated with multiple kidney diseases, such as diabetic nephropathy, proteinuric kidney disease, acute kidney injury, crystalline nephropathy, and drug- and heavy metal-induced renal injury. The impairment in the process of autophagic clearance may induce injury in renal intrinsic cells by activating the inflammasome, inducing cell cycle arrest, and cell death. The lysosome depletion may be a key mechanism triggering this process. In this review, we discuss this pathway and summarize the protective mechanisms for restoration of lysosome function and autophagic flux via the endosomal sorting complex required for transport (ESCRT) machinery, lysophagy, and transcription factor EB-mediated lysosome biogenesis. KEY MESSAGE: Further exploring mechanisms of ESCRT, lysophagy, and lysosome biogenesis may provide novel therapy strategies for the management of kidney diseases.

9.
Autophagy ; 17(9): 2325-2344, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33043774

RESUMO

Macroautophagy/autophagy dysregulation has been noted in diabetic nephropathy; however, the regulatory mechanisms controlling this process remain unclear. In this study, we showed that SMAD3 (SMAD family member 3), the key effector of TGFB (transforming growth factor beta)-SMAD signaling, induces lysosome depletion via the inhibition of TFEB-dependent lysosome biogenesis. The pharmacological inhibition or genetic deletion of SMAD3 restored lysosome biogenesis activity by alleviating the suppression of TFEB, thereby protecting lysosomes from depletion and improving autophagic flux in renal tubular epithelial cells in diabetic nephropathy. Mechanistically, we found that SMAD3 directly binds to the 3'-UTR of TFEB and inhibits its transcription. Silencing TFEB suppressed lysosome biogenesis and resulted in a loss of the protective effects of SMAD3 inactivation on lysosome depletion under diabetic conditions. In conclusion, SMAD3 promotes lysosome depletion via the inhibition of TFEB-dependent lysosome biogenesis; this may be an important mechanism underlying autophagy dysregulation in the progression of diabetic nephropathy.Abbreviations: AGEs: advanced glycation end products; ATP6V1H: ATPase H+ transporting V1 subunit H; CTSB: cathepsin B; ChIP: chromatin immunoprecipitation; Co-BSA: control bovine serum albumin; DN: diabetic nephropathy; ELISA: enzyme-linked immunosorbent assay; FN1: fibronectin 1; HAVCR1/TIM1/KIM-1: hepatitis A virus cellular receptor 1; LAMP1: lysosomal associated membrane protein 1; LMP: lysosome membrane permeabilization; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; NC: negative control; SIS3: specific inhibitor of SMAD3; SMAD3: SMAD family member 3; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; TECs: tubular epithelial cells; TFEB: transcription factor EB; TGFB1: transforming growth factor beta 1; TGFBR1: transforming growth factor beta receptor 1; UTR: untranslated region; VPS11: VPS11 core subunit of CORVET and HOPS complexes.


Assuntos
Autofagia , Diabetes Mellitus , Nefropatias Diabéticas , Proteína Smad3 , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Diabetes Mellitus/metabolismo , Células Epiteliais/metabolismo , Humanos , Lisossomos/metabolismo , Transdução de Sinais , Proteína Smad3/metabolismo
10.
Sci Rep ; 7(1): 8643, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28819100

RESUMO

Dysregulation of autophagy-mediated podocyte homeostasis is proposed to play a role in idiopathic membranous nephropathy (IMN). In the present study, autophagic activity and lysosomal alterations were investigated in podocytes of IMN patients and in cultured podocytes exposed to sublytic terminal complement complex, C5b-9. C5b-9 upregulated the number of LC3 positive puncta and the expression of p62 in patient podocytes and in C5b-9 injuried podocyte model. The lysosomal turnover of LC3-II was not influenced, although the BECN1 expression level was upregulated after exposure of podocytes to C5b-9. C5b-9 also caused a significant increase in the number of autophagosomes but not autolysosomes, suggesting that C5b-9 impairs the lysosomal degration of autophagosomes. Moreover, C5b-9 exacerbated the apoptosis of podocytes, which could be mimicked by chloroquine treatment, indicating that C5b-9 triggered podocyte injury, at least partially through inhibiting autophagy. Subsequent studies revealed that C5b-9 triggered lysosomal membrane permeabilization, which likely caused the decrease in enzymatic activity, defective acidification of lysosomes, and suppression of DQ-ovalbumin degradation. Taken together, our results suggest that the lysosomal-dependent autophagic pathway is blocked by C5b-9, which may play a key role in podocyte injury during the development of IMN.


Assuntos
Autofagia , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Glomerulonefrite Membranosa/metabolismo , Lisossomos/metabolismo , Podócitos/metabolismo , Transdução de Sinais , Adulto , Autofagossomos/metabolismo , Autofagia/imunologia , Permeabilidade da Membrana Celular , Complexo de Ataque à Membrana do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Feminino , Glomerulonefrite Membranosa/tratamento farmacológico , Glomerulonefrite Membranosa/imunologia , Glomerulonefrite Membranosa/patologia , Humanos , Lisossomos/ultraestrutura , Masculino , Pessoa de Meia-Idade , Podócitos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA