Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Biotechnol Appl Biochem ; 70(2): 518-525, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35696757

RESUMO

Glioma is a tumor in the brain and spinal cord originating in the glial cells that surround the nerve cells. Among several microRNAs reported, miRNA-363 is associated with human glioma. Based on miRNA-363 levels, the development and progression of glioma can be monitored. The current study used an interdigitated electrode sensor to monitor microRNA-363 levels, which indeed reflects the severity of glioma. The interdigitated electrode was generated using a photolithography technique followed by surface chemical modification carried out to insert miRNA-363 complementary oligo as the probe complexed with gold nanoparticles. The proposed sensor works based on the dipole moment between two electrodes, and when molecular immobilization or interaction occurs, the response by the signal output changes. The changes in the target microRNA-363 sequence were standardized to identify glioma. The limit of detection of miRNA-363 was 10 fM with an R2 value of 0.996 on the linear coefficient regression ranges between 1 fM and 100 pM. Furthermore, unrelated sequences failed to increase the response of the current with the complementary probe, indicating specific miRNA-363 detection on the interdigitated electrode. This study demonstrates the platform to be used for determining the presence of microRNA-363 in glioma and as the basis for other biomarker analyses.


Assuntos
Técnicas Biossensoriais , Glioma , Nanopartículas Metálicas , MicroRNAs , Humanos , MicroRNAs/genética , Ouro/química , Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Glioma/diagnóstico , Glioma/genética , Técnicas Eletroquímicas/métodos , Limite de Detecção
2.
Echocardiography ; 40(6): 537-549, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37178387

RESUMO

OBJECTIVES: To evaluate the left ventricular energy loss (EL), energy loss reserve (EL-r), and energy loss reserve rate in patients with mild coronary artery stenosis by using vector flow mapping (VFM) combined with exercise stress echocardiography. METHODS: A total of 34 patients (case group) with mild coronary artery stenosis and 36 sex and age matched patients (control group) without coronary artery stenosis according to coronary angiogram were prospectively enrolled. The total energy loss (ELt), basal segment energy loss (ELb), middle segment energy loss (ELm), apical segment energy loss (ELa), energy loss reserve (EL-r), and energy loss reserve rate were recorded in the isovolumic systolic period (S1), rapid ejection period (S2), slow ejection period (S3), isovolumic diastolic period (D1), rapid filling period (D2), slow filling period (D3), and atrial contraction period (D4). RESULTS: Compared with the control group, some of the EL in the resting case group were higher; some of the EL in the case group were lower after exercise, and those during D1 ELb and D3 ELb were higher. Compared with the resting state, the total EL and the EL within the time segment in the control group were higher after exercise, except during D2 ELb. In the case group, except for during D1 ELt, ELb and D2 ELb, the total and segmental EL of each phase was mostly higher after exercise (p < .05). Compared with the control group, most of the EL-r and EL reserve rates in the case group were lower (p < .05). CONCLUSION: The EL, EL-r, and energy loss reserve rate have a certain value in the evaluation of cardiac function in patients with mild coronary artery stenosis.


Assuntos
Estenose Coronária , Ecocardiografia sob Estresse , Humanos , Sístole , Diástole , Ventrículos do Coração/diagnóstico por imagem , Função Ventricular Esquerda
3.
Neoplasma ; 68(5): 924-937, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33998239

RESUMO

Homoharringtonine (HHT), was first isolated from the bark of Cephalotaxus harringtonia (Knight ex J. Forbes) K. Koch and Cephalotaxus fortunei Hook trees. The bark extract is used to treat leukemia and in recent years has also been used in traditional Chinese medicine (TCM) to treat solid tumors. However, the inhibitory mechanism of HHT in the progression of hepatocellular carcinoma (HCC) is rarely studied. We aimed to evaluate the antitumor efficacy of HHT on HCC in vitro and in vivo and elucidate the underlying molecular mechanism(s). HCC cell lines, including HCCLM3, HepG2, and Huh7, were used to evaluate the antitumor efficacy of HHT in vitro. Cytotoxicity and proliferative ability were evaluated by MTT and colony formation assays. Cell cycle progression and apoptosis in HHT-treated HCC cells were evaluated by flow cytometry. To determine the migration and invasion abilities of HCC cells, wound-healing and Transwell assays were used. Finally, western blot analysis was used to reveal the proteins involved. We also established a xenograft nude mouse model for in vivo assessments of the preclinical efficacy of HHT, mainly using hematoxylin and eosin staining, immunohistochemistry, ultrasound imaging (USI), and magnetic resonance imaging (MRI). HHT suppressed the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of HCC cells, and induced cell cycle arrest at the G2 phase and apoptosis. In the HCC xenograft model, HHT showed an obvious tumor-suppressive effect. Surprisingly, Slug expression was also decreased by HHT via the PI3K/AKT/GSK3ß signaling pathway at least partially suppressed the growth of HCC via the PI3K/AKT/GSK3ß/Slug signaling pathway.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Glicogênio Sintase Quinase 3 beta , Mepesuccinato de Omacetaxina , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Biochem Biophys Res Commun ; 508(1): 159-168, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30473218

RESUMO

The transcription factor Krüppel-like factor 5 (KLF5) is highly expressed in many cancers and serves as a prognostic factor. However, the function of KLF5 in hepatocellular carcinoma (HCC) is unclear. In this study, we found that KLF5 was significantly overexpressed in HCC cell lines and specimens, and high KLF5 expression predicted a poor prognosis for HCC patients. Then, we studied the effects of KLF5 on the proliferation, apoptosis, migration and invasion of HCC cells in vitro and vivo. The inhibition of KLF5 markedly inhibited HCC growth and metastasis, while KLF5 overexpression promoted these processes. In addition, we observed that KLF5 could promote the epithelial-mesenchymal transition (EMT) in HCC via the PI3K/AKT/Snail signaling pathway. The silencing of KLF5 in HCC cell lines downregulated the expression of N-cadherin, Vimentin and Snail and increased the expression of the epithelial marker E-cadherin. The expression of MMP2 and MMP9 was also decreased in KLF5-silenced HCC cells. However, opposite results were observed in the KLF5-overexpressing group. These results indicate that KLF5 plays a significant role in HCC progression and metastasis and induces EMT via activating PI3K/AKT/Snail signaling, and the inhibition of KLF5 may be a potential treatment modality for patients with HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Neoplasias Hepáticas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fatores de Transcrição da Família Snail/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/secundário , Proliferação de Células , Células Cultivadas , Feminino , Humanos , Fatores de Transcrição Kruppel-Like/deficiência , Fatores de Transcrição Kruppel-Like/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Masculino , Pessoa de Meia-Idade
6.
Front Cardiovasc Med ; 11: 1340289, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576423

RESUMO

Purpose: Vector flow mapping and treadmill exercise stress echocardiography were used to evaluate and explore changes in the left ventricular (LV) flow field of patients with nonobstructive coronary artery disease. Methods: Overall, 34 patients with nonobstructive (<50%) left anterior descending coronary artery stenosis (case group) and 36 patients with no coronary artery stenosis (control group) were included. Apical four-, three-, and two-chamber echocardiographic images were collected at rest and during early recovery from treadmill exercise. LV flow field, vortex area, and circulation (cir) changes were recorded in different phases: isovolumetric systole (S1), rapid ejection (S2), slow ejection (S3), isovolumetric diastole (D1), rapid filling (D2), slow filling (D3), and atrial systole (D4). Intra- and inter-group differences were compared before and after exercise loading. Results: The control and case groups demonstrated regular trends of eddy current formation and dissipation at rest and under stress. Compared with the control group, the case group had irregular streamline distributions. Abnormal vortices formed in the S1 and D3 apical segments and D1 left ventricular middle segment in the resting group. Compared with the control group, the resting group had decreased left ventricular S1 vortex areas and increased S3 vortex areas. The post-stress D1 and D3 vortex areas and D1 and D2 cir increased. Compared with at rest, after stress, the control group had decreased S1, S3, D2, and D3 vortex areas; increased S2, D1, D3, and D4 cir; and decreased D2 cir. After stress, the case group had decreased S3 and D2 vortex areas, increased D1 vortex areas, and increased S2, D1, D3, and D4 cir (P all < 0.001). Logistic regression and ROC curve analyses show that increased D1 vortex area after stress is an independent risk factor for stenosis in nonobstructive stenosis of coronary arteries (OR: 1.007, 95% CI: 1.005-1.010, P < 0.05). A D1 vortex area cutoff value of 82.26 had an AUC, sensitivity, and specificity of 0.67, 0.655, and 0.726, respectively. Conclusion: The resting left ventricular flow field changed in patients with nonobstructive left anterior descending coronary artery stenosis. Both groups had more disordered left ventricular blood flow after stress. The increased D1 vortex area after stress is an independent risk factor for mild coronary stenosis and may contribute to the assessment of nonobstructive coronary stenosis. VFM combined with treadmill stress is useful in evaluating left ventricular flow field changes in patients with nonobstructive coronary artery disease, which is valuable in the early evaluation of coronary heart disease.

7.
IEEE Trans Image Process ; 32: 5408-5422, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37773911

RESUMO

Existing two-view multi-model fitting methods typically follow a two-step manner, i.e., model generation and selection, without considering their interaction. Therefore, in the first step, these methods have to generate a considerable number of instances in order to cover all desired ones, which not only offers no guarantees, but also introduces unnecessary expensive calculations. To address this challenge, this study presents a new algorithm, termed as D2Fitting, that incrementally explores dominant instances. Particularly, rather than viewing model generation and selection as two disjoint parts, D2Fitting fully considers their interaction, and thus performs these two subroutines alternatively under a simple yet effective optimization framework. This design can avoid generating too many redundant instances, thus reducing computational overhead and allowing the proposed D2Fitting being real-time. Meanwhile, we further design a novel density-guided sampler to sample high-quality minimal subsets during the model generation process, so as to fully exploit the spatial distribution of the input data. Also, to mitigate the influence of noise on the subsets sampled by the proposed sampler, a global-residual optimization strategy is investigated for the minimal subset refinement. With all the ingredients mentioned above, the proposed D2Fitting can accurately estimate the number and parameters of geometric models and efficiently segment the input data simultaneously. Extensive experiments on several public datasets demonstrate the significant superiority of D2Fitting over several state-of-the-arts.

8.
Oncol Rep ; 45(1): 139-150, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33416119

RESUMO

Fangchinoline (FAN), an alkaloid extracted from Stephania tetrandra, has a variety of biological and pharmacological activities, but evidence of its effects on colon adenocarcinoma (COAD) is limited. Therefore, the present study aimed to elucidate the molecular mechanisms by which FAN affects COAD. The cytotoxicity, viability and proliferation of DLD­1 and LoVo cells were assessed in the presence of FAN using MTT and colony formation assays. The effects of FAN on apoptosis and the cell cycle in COAD cells were analysed by flow cytometry, and the migration and invasion of these cells were assessed by wound healing and Transwell experiments. Furthermore, a network pharmacological analysis was conducted to investigate the target of FAN and the results were confirmed by western blotting. In addition, a xenograft model was established in nude mice, and ultrasound imaging was used to assess the preclinical therapeutic effects of FAN in vivo. To the best of our knowledge, the results of this study provided the first evidence that FAN inhibited cellular proliferation, stemness, migration, invasion, angiogenesis and epithelial­mesenchymal transition (EMT), and induced apoptosis and G1­phase cell cycle arrest. Network pharmacological analysis further confirmed that FAN prevented EMT through the epidermal growth factor receptor (EGFR)­phosphoinositide 3­kinase (PI3K)/AKT signalling pathway. Finally, FAN significantly repressed tumour growth and promoted apoptosis in xenografts. Thus, targeting EGFR with FAN may offer a novel therapeutic approach for COAD.


Assuntos
Adenocarcinoma/tratamento farmacológico , Benzilisoquinolinas/farmacologia , Neoplasias do Colo/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Adenocarcinoma/patologia , Animais , Benzilisoquinolinas/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/patologia , Medicamentos de Ervas Chinesas/uso terapêutico , Receptores ErbB/metabolismo , Feminino , Humanos , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Transl Oncol ; 14(6): 101065, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33761371

RESUMO

BACKGROUND: This study aimed to identify a series of prognostically relevant immune features by immunophenoscore. Immune features were explored using MRI radiomics features to prediction the overall survival (OS) of lower-grade glioma (LGG) patients and their response to immune checkpoints. METHOD: LGG data were retrieved from TCGA and categorized into training and internal validation datasets. Patients attending the First Affiliated Hospital of Harbin Medical University were included in an external validation cohort. An immunophenoscore-based signature was built to predict malignant potential and response to immune checkpoint inhibitors in LGG patients. In addition, a deep learning neural network prediction model was built for validation of the immunophenoscore-based signature. RESULTS: Immunophenotype-associated mRNA signatures (IMriskScore) for outcome prediction and ICB therapeutic effects in LGG patients were constructed. Deep learning of neural networks based on radiomics showed that MRI radiomic features determined IMriskScore. Enrichment analysis and ssGSEA correlation analysis were performed. Mutations in CIC significantly improved the prognosis of patients in the high IMriskScore group. Therefore, CIC is a potential therapeutic target for patients in the high IMriskScore group. Moreover, IMriskScore is an independent risk factor that can be used clinically to predict LGG patient outcomes. CONCLUSIONS: The IMriskScore model consisting of a sets of biomarkers, can independently predict the prognosis of LGG patients and provides a basis for the development of personalized immunotherapy strategies. In addition, IMriskScore features were predicted by MRI radiomics using a deep learning approach using neural networks. Therefore, they can be used for the prognosis of LGG patients.

10.
Cell Death Dis ; 12(11): 963, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34667159

RESUMO

Psoriasis is an auto-inflammatory skin disease characterized by abnormal activation of epidermal keratinocytes, aberrant neovascularization, and dysregulation of immune cells. MicroRNAs are small non-coding RNAs that mainly function in the post-transcriptional regulation of gene expression. Recently, accumulating evidence has demonstrated that expression of microRNAs is dysregulated in psoriasis patients and microRNAs play key roles in psoriasis pathogenesis. Downregulation of miR-193b-3p has been identified to be associated with psoriasis development. However, the precise functions and action mechanisms of miR-193b-3p in psoriasis pathogenesis remain unclear. In this study, we confirmed the downregulation of miR-193b-3p in psoriasis patients, psoriasis-like inflammatory cellular models, and an imiquimod (IMQ) -induced mouse model. A negative correlation was found between miR-193b-3p level and patient Psoriasis Area and Severity Index (PASI) score. Furthermore, miR-193b-3p suppressed proliferation, inflammatory-factor secretion, and the STAT3 and NF-κB signaling pathways in keratinocytes. Importantly, intradermal injection of agomiR-193b-3p blocked, whereas antagomiR-193b-3p augmented, the psoriasis-like inflammation in the IMQ-induced mouse model. Bioinformatics analysis and the dual-luciferase reporter assay showed that miR-193b-3p targets ERBB4 3' untranslated region (UTR). In addition, ERBB4 induced proliferation, inflammatory-factor production, and the STAT3 and NF-κB pathways in keratinocytes. Most importantly, forced expression of ERBB4 could attenuate the effects of miR-193b-3p in keratinocytes, indicating that miR-193b-3p inhibits keratinocyte activation by directly targeting ERBB4. In conclusion, our findings demonstrated that the miR-193b-3p-ERBB4 axis underlies the hyperproliferation and aberrant inflammatory-factor secretion of psoriatic keratinocytes, providing a novel, microRNA-related causal mechanism and a potential therapeutic target in psoriasis.


Assuntos
Mediadores da Inflamação/metabolismo , Queratinócitos/metabolismo , Queratinócitos/patologia , MicroRNAs/metabolismo , Psoríase/genética , Psoríase/patologia , Receptor ErbB-4/metabolismo , Animais , Antagomirs/farmacologia , Sequência de Bases , Proliferação de Células/genética , Modelos Animais de Doenças , Regulação para Baixo/genética , Feminino , Células HaCaT , Humanos , Imiquimode/efeitos adversos , Inflamação/genética , Inflamação/patologia , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Modelos Biológicos , Psoríase/induzido quimicamente , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pele/patologia
11.
Nano Converg ; 8(1): 29, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34606010

RESUMO

Hepatocellular carcinoma (HCC) is one of the most malignant tumors in the world, and patients with HCC face a poor prognosis. The conventional therapeutic strategies for HCC have undergone a challenge-riddled evolution owing to side effects and unsatisfactory efficacy. Here, aiming to provide a new method of HCC elimination, we formulated a novel multifunctional nanocapsule (PFP@PLGA/Cu12Sb4S13, PPCu) with applications in contrast-enhanced ultrasound imaging (CEUS) and photothermal therapy (PTT). These PPCu were successfully constructed with an average diameter of 346 nm (polydispersity index, PDI = 0.276). The reinforced contrast ratio of these PPCu was determined by CEUS, revealing their promising applications in image-guided monitoring of HCC treatment. Furthermore, the excellent photoabsorption and biocompatibility indicated by organ H&E staining indicated that PPCu meet quality expectations for use as photothermal transduction agent (PTA). PPCu treatment at 50 °C and higher temperatures efficiently repressed the proliferation, induced the apoptosis and decreased the motility of HCC cells. These effects might have been results of RAS/MAPK/MT-CO1 signaling pathway inhibition. In summary, PPCu were constructed to integrate CEUS and PTT successfully into therapy, which can lead to HCC elimination through RAS/MAPK/MT-CO1 signaling pathway repression.

12.
Int J Oncol ; 57(1): 183-196, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32319595

RESUMO

Cyclovirobuxine D (CVB­D) is an alkaloid, which is mainly derived from Buxus microphylla. It has been reported that CVB­D has positive effects on breast cancer, gastric cancer and other malignant tumors. However, to the best of our knowledge, there are no reports regarding the effects of CVB­D on colorectal cancer (CRC). The purpose of the present study was to determine the anticancer effects of CVB­D and further elucidate its molecular mechanism(s). DLD­1 and LoVo cell lines were selected to evaluate the antitumor effect of CVB­D. Cytotoxicity, viability and proliferation were evaluated by the MTT and colony formation assays. Flow cytometry was used to detect the effects on apoptosis and the cell cycle in CVB­D­treated CRC cells. The migration and invasion abilities of CRC cells were examined by wound healing and Transwell assays. In addition, RNA sequencing, bioinformatics analysis and western blotting were performed to investigate the target of drug action and clarify the molecular mechanisms. A xenograft model was established using nude mice, and ultrasound was employed to assess the preclinical therapeutic effects of CVB­D in vivo. It was identified that CVB­D inhibited the proliferation, migration, stemness, angiogenesis and epithelial­mesenchymal transition of CRC cells, and induced apoptosis and S­phase arrest. In addition, CVB­D significantly inhibited the growth of xenografts. It is notable that CVB­D exerted anticancer effects in CRC cells partly by targeting collagen triple helix repeat containing 1 (CTHRC1), which may be upstream of the AKT and ERK pathways. CVB­D exerted anticancer effects through the CTHRC1­AKT/ERK­Snail signaling pathway. Targeted therapy combining CTHRC1 with CVB­D may offer a promising novel therapeutic approach for CRC treatment.


Assuntos
Adenocarcinoma/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias do Colo/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Proteínas da Matriz Extracelular/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Adenocarcinoma/irrigação sanguínea , Adenocarcinoma/patologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinogênese/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Neoplasias do Colo/irrigação sanguínea , Neoplasias do Colo/patologia , Medicamentos de Ervas Chinesas/uso terapêutico , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Humanos , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/metabolismo , RNA-Seq , Fatores de Transcrição da Família Snail/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Life Sci ; 258: 118158, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32750435

RESUMO

AIMS: Glioblastoma multiforme (GBM) is characterized by aggressive infiltration and terrible lethality. The overwhelming majority of chemotherapeutic drugs fail to exhibit the desired treatment effects. Polydatin (PD), which was initially extracted from Polygonum cuspidatum, is distinguished for its outstanding cardioprotective, hepatoprotective, and renal protective effects, as well as significant anticancer activities. However, the anti-GBM effect of PD is unclear. MATERIALS AND METHODS: Cell proliferation and apoptosis after PD intervention were estimated using MTT, colony formation and flow cytometry assays in vitro, while wound-healing and Transwell assays were applied to assess cell migration and invasion. In addition, the anti-GBM effects of PD in vivo were detected in the subcutaneous tumor model of nude mice. Moreover, Western blot, immunofluorescence and immunohistochemical staining assays were employed to elaborate the relevant molecular mechanisms. KEY FINDINGS: The present study demonstrated that PD repressed cell proliferation, migration, invasion and stemness and promoted apoptosis in GBM cells. Moreover, by correlating the molecular characteristics of cancer cells with different sensitivities to PD and employing diverse analytical methods, we ultimately verified that the cytotoxicity of PD was related to EGFR-AKT/ERK1/2/STAT3-SOX2/Snail signaling pathway inhibition, in which multiple components were vital therapeutic targets of GBM. SIGNIFICANCE: This work demonstrated that PD could inhibit proliferation, migration, invasion and stemness and induce apoptosis by restraining multiple components of the EGFR-AKT/ERK1/2/STAT3-SOX2/Snail signaling pathway in GBM cells.


Assuntos
Antineoplásicos/uso terapêutico , Glioblastoma/tratamento farmacológico , Glucosídeos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Estilbenos/uso terapêutico , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Glioblastoma/metabolismo , Glucosídeos/farmacologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Fator de Transcrição STAT3/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Estilbenos/farmacologia
14.
Theranostics ; 9(5): 1453-1473, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30867843

RESUMO

Glioblastoma multiforme (GBM) has been considered the most aggressive glioma type. Temozolomide (TMZ) is the main first-line chemotherapeutic agent for GBM. Decreased mutS homolog 6 (MSH6) expression is clinically recognized as one of the principal reasons for GBM resistance to TMZ. However, the specific functions of MSH6 in GBM, in addition to its role in mismatch repair, remain unknown. Methods: Bioinformatics were employed to analyze MSH6 mRNA and protein levels in GBM clinical samples and to predict the potential cancer-promoting functions and mechanisms of MSH6. MSH6 levels were silenced or overexpressed in GBM cells to assess its functional effects in vitro and in vivo. Western blot, qRT-PCR, and immunofluorescence assays were used to explore the relevant molecular mechanisms. Cu2(OH)PO4@PAA nanoparticles were fabricated through a hydrothermal method. Their MRI and photothermal effects as well as their effect on restraining the MSH6-CXCR4-TGFB1 feedback loop were investigated in vitro and in vivo. Results: We demonstrated that MSH6 is an overexpressed oncogene in human GBM tissues. MSH6, CXCR4 and TGFB1 formed a triangular MSH6-CXCR4-TGFB1 feedback loop that accelerated gliomagenesis, proliferation (G1 phase), migration and invasion (epithelial-to-mesenchymal transition; EMT), stemness, angiogenesis and antiapoptotic effects by regulating the p-STAT3/Slug and p-Smad2/3/ZEB2 signaling pathways in GBM. In addition, the MSH6-CXCR4-TGFB1 feedback loop was a vital marker of GBM, making it a promising therapeutic target. Notably, photothermal therapy (PTT) mediated by Cu2(OH)PO4@PAA + near infrared (NIR) irradiation showed outstanding therapeutic effects, which might be associated with a repressed MSH6-CXCR4-TGFB1 feedback loop and its downstream factors in GBM. Simultaneously, the prominent MR imaging (T1WI) ability of Cu2(OH)PO4@PAA could provide visual guidance for PTT. Conclusions: Our findings indicate that the oncogenic MSH6-CXCR4-TGFB1 feedback loop is a novel therapeutic target for GBM and that PTT is associated with the inhibition of the MSH6-CXCR4-TGFB1 loop.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Glioblastoma/fisiopatologia , Glioblastoma/terapia , Hipertermia Induzida/métodos , Fototerapia/métodos , Receptores CXCR4/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Biologia Computacional , Modelos Animais de Doenças , Retroalimentação Fisiológica , Perfilação da Expressão Gênica , Humanos , Camundongos Endogâmicos BALB C , Modelos Teóricos , Nanoestruturas/administração & dosagem , Resultado do Tratamento , Ensaio Tumoral de Célula-Tronco , Ensaios Antitumorais Modelo de Xenoenxerto
15.
J Exp Clin Cancer Res ; 38(1): 139, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30922391

RESUMO

BACKGROUND: Nuciferine (NF), extracted from the leaves of N. nucifera Gaertn, has been shown to exhibit anti-tumor and anti-viral pharmacological properties. It can also penetrate the blood brain barrier (BBB). However, the mechanism by which NF inhibits glioblastoma (GBM) progression is not well understood. We aimed to determine the anti-tumor effect of NF on GBM cell lines and clarify the potential molecular mechanism involved. METHODS: U87MG and U251 cell lines were used in vitro to assess the anti-tumor efficacy of NF. Cytotoxicity, viability, and proliferation were evaluated by MTT and colony formation assay. After Annexin V-FITC and PI staining, flow cytometry was performed to evaluate apoptosis and cell cycle changes in NF-treated GBM cells. Wound healing and Transwell assays were used to assess migration and invasion of GBM cells. Western blot analysis, immunofluorescence staining, immunohistochemistry, and bioinformatics were used to gain insights into the molecular mechanisms. Preclinical therapeutic efficacy was mainly estimated by ultrasound and MRI in xenograft nude mouse models. RESULTS: NF inhibited the proliferation, mobility, stemness, angiogenesis, and epithelial-to-mesenchymal transition (EMT) of GBM cells. Additionally, NF induced apoptosis and G2 cell cycle arrest. Slug expression was also decreased by NF via the AKT and STAT3 signaling pathways. Interestingly, we discovered that NF affected GBM cells partly by targeting SOX2, which may be upstream of the AKT and STAT3 pathways. Finally, NF led to significant tumor control in GBM xenograft models. CONCLUSIONS: NF inhibited the progression of GBM via the SOX2-AKT/STAT3-Slug signaling pathway. SOX2-targeting with NF may offer a novel therapeutic approach for GBM treatment.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Aporfinas/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos Fitogênicos/farmacologia , Aporfinas/farmacologia , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Progressão da Doença , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Glioblastoma/metabolismo , Humanos , Camundongos , Camundongos Nus , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Fator de Transcrição STAT3/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Biomater Sci ; 7(1): 409-418, 2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30488900

RESUMO

The development of nanoplatforms with integrated therapeutic and imaging functions is necessary for highly efficient cancer therapy. Herein, 3D CuS hollow nanoflowers (HNs) consisting of 2D nanoplates are successfully fabricated through the technique of laser ablation in liquids followed by ion-exchange reactions and applied for the first time as a theranostic nanoagent for magnetic resonance imaging (MRI), photothermal therapy (PTT), and chemotherapy simultaneously. Due to the sufficient and immediate contact between the exposed cupric centers of nanoplates and protons from water molecules, CuS HNs are demonstrated to be capable of being a T1 positive contrast agent for efficient MRI of tumors on the T2-weighted fluid-attenuated inversion recovery imaging (T2-FLAIR) sequence. Besides, the hollow structure makes CuS HNs an efficient nanoplatform for drug loading with a laser-triggered drug release. Moreover, CuS HNs exhibit high photothermal conversion efficiency (30%) and good biocompatibility. The combination of PTT and chemotherapy with CuS HNs provides a significant synergistic therapeutic effect, resulting in a higher tumor inhibition ratio than PTT or chemotherapy alone. This study demonstrates a single-component multifunctional theranostic nanoagent for T2-FLAIR MRI guided thermochemotherapy, which has great potential application in theranostics of cancer.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Cobre/uso terapêutico , Doxorrubicina/uso terapêutico , Nanoestruturas/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Nanomedicina Teranóstica/métodos , Animais , Antibióticos Antineoplásicos/administração & dosagem , Meios de Contraste/química , Meios de Contraste/uso terapêutico , Cobre/química , Preparações de Ação Retardada/química , Preparações de Ação Retardada/uso terapêutico , Doxorrubicina/administração & dosagem , Liberação Controlada de Fármacos , Feminino , Células Hep G2 , Humanos , Hipertermia Induzida/métodos , Lasers , Imageamento por Ressonância Magnética/métodos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanoestruturas/química
18.
Front Physiol ; 9: 1026, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30108516

RESUMO

Background: Continuous damage from oxidative stress and apoptosis are the important mechanisms that facilitate chronic heart failure (CHF). Molecular hydrogen (H2) has potentiality in the aspects of anti-oxidation. The objectives of this study were to investigate the possible mechanism of H2 inhalation in delaying the progress of CHF. Methods and Results: A total of 60 Sprague-Dawley (SD) rats were randomly divided into four groups: Sham, Sham treated with H2, CHF and CHF treated with H2. Rats from CHF and CHF treated with H2 groups were injected isoprenaline subcutaneously to establish the rat CHF model. One month later, the rat with CHF was identified by the echocardiography. After inhalation of H2, cardiac function was improved vs. CHF (p < 0.05), whereas oxidative stress damage and apoptosis were significantly attenuated (p < 0.05). In this study, the mild oxidative stress was induced in primary cardiomyocytes of rats, and H2 treatments significantly reduced oxidative stress damage and apoptosis in cardiomyocytes (p < 0.05 or p < 0.01). Finally, as a pivotal transcription factor in reactive oxygen species (ROS)-apoptosis signaling pathway, the expression and phosphorylation of p53 were significantly reduced by H2 treatment in this rat model and H9c2 cells (p < 0.05 or p < 0.01). Conclusion: As a safe antioxidant, molecular hydrogen mitigates the progression of CHF via inhibiting apoptosis modulated by p53. Therefore, from the translational point of view and speculation, H2 is equipped with potential therapeutic application as a novel antioxidant in protecting CHF in the future.

19.
Oxid Med Cell Longev ; 2016: 4528906, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26697133

RESUMO

Long-term heavy alcohol consumption is considered to be one of the main causes of left ventricular dysfunction in alcoholic cardiomyopathy (ACM). As previously suggested, high-dose alcohol induces oxidation stress and apoptosis of cardiomyocytes. However, the underlying mechanisms are yet to be elucidated. In this study, we found that high-dose alcohol treatment stimulated expression and activity of Pin1 in mouse primary cardiomyocytes. While siRNA-mediated knockdown of Pin1 suppressed alcohol-induced mouse cardiomyocyte apoptosis, overexpression of Pin1 further upregulated the numbers of apoptotic mouse cardiomyocytes. We further demonstrated that Pin1 promotes mitochondria oxidative stress and loss of mitochondrial membrane potential but suppresses endothelial nitric oxide synthase (eNOS) expression in the presence of alcohol. Taken together, our results revealed a pivotal role of Pin1 in regulation of alcohol-induced mouse cardiomyocytes apoptosis by promoting reactive oxygen species (ROS) accumulation and repressing eNOS expression, which could be potential therapeutic targets for ACM.


Assuntos
Apoptose/efeitos dos fármacos , Etanol/toxicidade , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Peptidilprolil Isomerase/antagonistas & inibidores , RNA Interferente Pequeno/farmacologia , Animais , Apoptose/genética , Camundongos , Miócitos Cardíacos/patologia , Peptidilprolil Isomerase de Interação com NIMA , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/genética , Estresse Oxidativo/imunologia , Peptidilprolil Isomerase/genética , Peptidilprolil Isomerase/metabolismo , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA