Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neurochem Res ; 38(5): 961-71, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23440543

RESUMO

Ischemic stroke is a major composition of cerebrovascular disease, seriously threatening to human health in the world. Activin A (ActA), belonging to transforming growth factor-beta (TGF-ß) super family, plays an important role in the hypoxic-ischemic brain injury through ActA/Smads pathway. While as an essential phosphorylation assistor in TGF-ß signaling, the functions and mechanisms of smad anchor for receptor activation (SARA) in ischemic brain injury remain poorly understood. To solve this problem and explore the pathological processes of ischemic stroke, we used an Oxygen-Glucose deprivation (OGD) model in nerve growth factor-induced differentiated rattus PC12 pheochromocytoma cells and down regulated the expressions of SARA by RNA interference technology. Our results showed that the repression of SARA before OGD exposure reduced the expressions of Smad2, 3, 4 mRNA and the phosphorylation rate of Smad2 protein, but it did not affect the mRNA expressions of Smad7. After OGD treatment, ActA/Smads pathway was activated and the expression of SARA in the SARA pre-repression group was significantly up-regulated. The pre-repression of SARA increased the sensitivities of nerve-like cells to OGD damage. Moreover, the mRNA expression of Smad7 which was supposed to participate in the negative feedback of ActA/Smads pathway was also elevated due to OGD injury. Taken together, these results suggest a positive role of SARA in assisting the phosphorylation of Smad2 and maintaining the neuron protective effect of ActA/Smads pathway.


Assuntos
Glucose/metabolismo , Oxigênio/metabolismo , Proteínas Smad/metabolismo , Animais , Sequência de Bases , Primers do DNA , Células PC12 , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
2.
Molecules ; 18(10): 12977-86, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24141247

RESUMO

Activin A (ActA), a member of transforming growth factor-beta (TGF-b) super- family, affects many cellular processes, including ischemic stroke. Though the neuroprotective effects of exogenous ActA on oxygen-glucose deprivation (OGD) injury have already been reported by us, the endogenous role of ActA remains poorly understood. To further define the role and mechanism of endogenous ActA and its signaling in response to acute ischemic damage, we used an OGD model in PC12 cells to simulate ischemic injury on neurons in vitro. Cells were pre-treated by monoclonal antibody against activin receptor type IIA (ActRII-Ab). We found that ActRII-Ab augments ischemic injury in PC12 cells. Further, the extracellular secretion of ActA as well as phosphorylation of smad3 in PC12 cells was also up-regulated by OGD, but suppressed by ActRII-Ab. Taken together, our results show that ActRII-Ab may augment ischemic injury via blocking of transmembrane signal transduction of ActA, which confirmed the existence of endogenous neuroprotective effects derived from the ActA/Smads pathway. ActRIIA plays an important role in transferring neuronal protective signals inside. It is highly possible that ActA transmembrance signaling is a part of the positive feed-back loop for extracellular ActA secretion.


Assuntos
Subunidades beta de Inibinas/fisiologia , Transdução de Sinais , Proteína Smad3/metabolismo , Receptores de Activinas Tipo II/antagonistas & inibidores , Receptores de Activinas Tipo II/metabolismo , Animais , Hipóxia Celular , Sobrevivência Celular , Glucose/deficiência , Hipóxia-Isquemia Encefálica/metabolismo , Células PC12 , Fosforilação , Processamento de Proteína Pós-Traducional , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA