Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
1.
Mol Ther ; 31(5): 1437-1450, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35982620

RESUMO

Tubular epithelial cells (TECs) exposed to hypoxia incite tubulointerstitial inflammation (TII), while the exact mechanism is unclear. In this study, we identified that hypoxia evoked tubule injury as evidenced by tubular hypoxia-inducible factor-1α and kidney injury molecule-1 (KIM-1) expression and that renal small extracellular vesicle (sEV) production was increased with the development of TII after ischemia-reperfusion injury (IRI). Intriguingly, KIM-1-positive tubules were surrounded by macrophages and co-localized with sEVs. In vitro, KIM-1 expression and sEV release were increased in hypoxic TECs and the hypoxia-induced inflammatory response was ameliorated when KIM-1 or Rab27a, a master regulator of sEV secretion, was silenced. Furthermore, KIM-1 was identified to mediate hypoxic TEC-derived sEV (Hypo-sEV) uptake by TECs. Phosphatidylserine (PS), a ligand of KIM-1, was present in Hypo-sEVs as detected by nanoflow cytometry. Correspondingly, the inflammatory response induced by exogenous Hypo-sEVs was attenuated when KIM-1 was knocked down. In vivo, exogenous-applied Hypo-sEVs localized to KIM-1-positive tubules and exacerbated TII in IRI mice. Our study demonstrated that KIM-1 expressed by injured tubules mediated sEV uptake via recognizing PS, which participated in the amplification of tubule inflammation induced by hypoxia, leading to the development of TII in ischemic acute kidney injury.


Assuntos
Vesículas Extracelulares , Traumatismo por Reperfusão , Animais , Camundongos , Células Epiteliais/metabolismo , Vesículas Extracelulares/metabolismo , Hipóxia/metabolismo , Inflamação/metabolismo , Rim/metabolismo , Traumatismo por Reperfusão/metabolismo
2.
J Chem Phys ; 160(21)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38832747

RESUMO

The interplay between orientation transition and chiral self-assemblies of para-terphenyl (P3P) molecules on the Cd(0001) surface has been investigated using low temperature scanning tunneling microscopy and density functional theory calculations. Three distinct molecular orientations have been discerned from the self-assembled thin films of P3P. At the low coverage, flat-lying molecules appear in the homochiral domains with the incommensurate registry to the substrate. With the coverage increasing, the incoming molecules are incorporated into the first layer with edge-on orientation and form the self-assembled zigzag chains. The alternative arrangement of zigzag chains with opposite chirality leads to the formation of a c(4 × 2) superstructure, in which the tilted molecules exhibit orientational frustration and fuzzy noises. The analysis of the tunneling spectra reveals that the electronic structure of P3P layers is contingent upon the hybridization between the electronic states of P3P molecules and the Cd(0001) surface. These results provide important insights into the interplay between orientational transition and chiral assembly of P3P molecules on metal substrates.

3.
Cell Mol Life Sci ; 80(12): 347, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37943391

RESUMO

Tubulointerstitial fibrosis (TIF) plays a crucial role in the progression of diabetic kidney disease (DKD). However, the underlying molecular mechanisms remain obscure. The present study aimed to examine whether transmembrane member 16A (TMEM16A), a Ca2+-activated chloride channel, contributes to the development of TIF in DKD. Interestingly, we found that TMEM16A expression was significantly up-regulated in tubule of murine model of DKD, which was associated with development of TIF. In vivo inhibition of TMEM16A channel activity with specific inhibitors Ani9 effectively protects against TIF. Then, we found that TMEM16A activation induces tubular mitochondrial dysfunction in in vivo and in vitro models, with the evidence of the TMEM16A inhibition with specific inhibitor. Mechanically, TMEM16A mediated tubular mitochondrial dysfunction through inhibiting PGC-1α, whereas overexpression of PGC-1α could rescue the changes. In addition, TMEM16A-induced fibrogenesis was dependent on increased intracellular Cl-, and reducing intracellular Cl- significantly blunted high glucose-induced PGC-1α and profibrotic factors expression. Taken together, our studies demonstrated that tubular TMEM16A promotes TIF by suppressing PGC-1α-mediated mitochondrial homeostasis in DKD. Blockade of TMEM16A may serve as a novel therapeutic approach to ameliorate TIF.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Animais , Camundongos , Nefropatias Diabéticas/genética , Homeostase , Mitocôndrias , Fibrose
4.
Neurocrit Care ; 40(2): 743-749, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37697126

RESUMO

BACKGROUND: The objective of this study was to investigate the clinical, imaging, and outcome characteristics of intracerebral hemorrhage (ICH) caused by structural vascular lesions. METHODS: We retrospectively analyzed data from a prospective observational cohort study of patients with spontaneous ICH admitted to the First Affiliated Hospital of Chongqing Medical University between May 2016 and April 2021. Good outcome was defined as modified Rankin Scale score of 0-3 at 3 months. The clinical and imaging characteristics were compared between primary ICH and ICH caused by structural vascular lesions. Multivariable logistic regression analysis was performed to test the associations of etiology with clinical outcome. RESULTS: All patients enrolled in this study were Asian. Compared with patients with primary ICH, those with structural vascular lesions were younger (48 vs. 62 years, P < 0.001), had a lower incidence of hypertension (26.4% vs. 81.7%, P < 0.001) and diabetes (7.4% vs. 16.2%, P = 0.003), and had mostly lobar hemorrhages (49.1% vs. 22.8%). ICH from structural vascular lesions had smaller baseline hematoma volume (8.4 ml vs. 13.8 ml, P = 0.010), had lower mortality rate at 30 days and 3 months (5.8% vs. 12.0%, P = 0.020; 6.7% vs. 14.8%, P = 0.007), and are associated with better functional outcome at 3 months (88% vs.70.3%, P < 0.001). CONCLUSIONS: Compared with primary ICH, ICH due to vascular lesions has smaller hematoma volume and less severe neurological deficit at presentation and better functional outcomes.


Assuntos
Hemorragia Cerebral , Tomografia Computadorizada por Raios X , Humanos , Estudos Retrospectivos , Estudos Prospectivos , Hemorragia Cerebral/complicações , Hematoma/diagnóstico por imagem , Hematoma/terapia , Hematoma/complicações
5.
Aggress Behav ; 50(4): e22164, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38958535

RESUMO

Moral disengagement is an important aggressive and moral cognition. The mechanisms of changes in moral disengagement remain unclear, especially at the within-person level. We attempted to clarify this by exploring the serial effects of personal relative deprivation and hostility on civic moral disengagement. We conducted a three-wave longitudinal survey with 1058 undergraduates (63.61% women; mean age = 20.97). The results of the random intercept cross-lagged panel model showed that personal relative deprivation at Wave 1 and hostility at Wave 2 formed a serial effect on the within-person changes in civic moral disengagement at Wave 3, and the longitudinal indirect effect test showed that the within-person dynamics in hostility at Wave 2 acted as a mediator. The results of multiple group analysis across genders further showed that the longitudinal indirect role of hostility at Wave 2 was only observed for men, but not for women, which indicates the moderating effect of gender. These findings facilitate an understanding of the mechanisms of aggressive cognitions at the within-person level and offer implications for the prevention and intervention of aggression from the perspective of moral cognition.


Assuntos
Agressão , Hostilidade , Princípios Morais , Humanos , Masculino , Feminino , Agressão/psicologia , Estudos Longitudinais , Adulto Jovem , Adulto , Cognição , Cognição Social , Fatores Sexuais
6.
J Stroke Cerebrovasc Dis ; 33(6): 107683, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38513767

RESUMO

BACKGROUND AND OBJECTIVES: The prognosis of patients with spontaneous intracerebral hemorrhage (ICH) is often influenced by hematoma volume, a well-established predictor of poor outcome. However, the optimal intraventricular hemorrhage (IVH) volume cutoff for predicting poor outcome remains unknown. METHODS: We analyzed 313 patients with spontaneous ICH not undergoing evacuation, including 7 cases with external ventricular drainage (EVD). These patients underwent a baseline CT scan, followed by a 24-hour CT scan for measurement of both hematoma and IVH volume. We defined hematoma growth as hematoma growth > 33 % or 6 mL at follow-up CT, and poor outcome as modified Rankin Scale score≥3 at three months. Cutoffs with optimal sensitivity and specificity for predicting poor outcome were identified using receiver operating curves. RESULTS: The receiver operating characteristic analysis identified 6 mL as the optimal cutoff for predicting poor outcome. IVH volume> 6 mL was observed in 53 (16.9 %) of 313 patients. Patients with IVH volume>6 mL were more likely to be older and had higher NIHSS score and lower GCS score than those without. IVH volume>6 mL (adjusted OR 2.43, 95 % CI 1.13-5.30; P = 0.026) was found to be an independent predictor of poor clinical outcome at three months in multivariable regression analysis. CONCLUSIONS: Optimal IVH volume cutoff represents a powerful tool for improving the prediction of poor outcome in patients with ICH, particularly in the absence of clot evacuation or common use of EVD. Small amounts of intraventricular blood are not independently associated with poor outcome in patients with intracerebral hemorrhage. The utilization of optimal IVH volume cutoffs may improve the clinical trial design by targeting ICH patients that will obtain maximal benefit from therapies.


Assuntos
Valor Preditivo dos Testes , Tomografia Computadorizada por Raios X , Humanos , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Hemorragia Cerebral Intraventricular/diagnóstico por imagem , Hemorragia Cerebral Intraventricular/fisiopatologia , Hemorragia Cerebral Intraventricular/terapia , Hemorragia Cerebral Intraventricular/diagnóstico , Hemorragia Cerebral/diagnóstico por imagem , Hemorragia Cerebral/terapia , Hemorragia Cerebral/diagnóstico , Hemorragia Cerebral/fisiopatologia , Fatores de Risco , Fatores de Tempo , Idoso de 80 Anos ou mais , Avaliação da Deficiência , Hematoma/diagnóstico por imagem , Hematoma/diagnóstico , Curva ROC
7.
J Biol Chem ; 298(12): 102605, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36257404

RESUMO

Podocyte injury is a characteristic pathological hallmark of diabetic nephropathy (DN). However, the exact mechanism of podocyte injury in DN is incompletely understood. This study was conducted using db/db mice and immortalized mouse podocytes. High-throughput sequencing was used to identify the differentially expressed long noncoding RNAs in kidney of db/db mice. The lentiviral shRNA directed against long noncoding RNA small nucleolar RNA host gene 5 (SNHG5) or microRNA-26a-5p (miR-26a-5p) agomir was used to treat db/db mice to regulate the SNHG5/miR-26a-5p pathway. Here, we found that the expression of transient receptor potential canonical type 6 (TRPC6) was significantly increased in injured podocytes under the condition of DN, which was associated with markedly decreased miR-26a-5p. We determined that miR-26a-5p overexpression ameliorated podocyte injury in DN via binding to 3'-UTR of Trpc6, as evidenced by the markedly reduced activity of luciferase reporters by miR-26a-5p mimic. Then, the upregulated SNHG5 in podocytes and kidney in DN was identified, and it was proved to sponge to miR-26a-5p directly using luciferase activity, RNA immunoprecipitation, and RNA pull-down assay. Knockdown of SNHG5 attenuated podocyte injury in vitro, accompanied by an increased expression of miR-26a-5p and decreased expression of TRPC6, demonstrating that SNHG5 promoted podocyte injury by controlling the miR-26a-5p/TRPC6 pathway. Moreover, knockdown of SNHG5 protects against podocyte injury and progression of DN in vivo. In conclusion, SNHG5 promotes podocyte injury via the miR-26a-5p/TRPC6 pathway in DN. Our findings provide novel insights into the pathophysiology of podocyte injury and a potential new therapeutic strategy for DN.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , MicroRNAs , Podócitos , RNA Longo não Codificante , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Nefropatias Diabéticas/metabolismo , Canal de Cátion TRPC6/genética , Canal de Cátion TRPC6/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Podócitos/metabolismo , Apoptose/genética , Diabetes Mellitus/metabolismo
8.
Inflamm Res ; 72(5): 1051-1067, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37039838

RESUMO

BACKGROUND: Tubulointerstitial inflammation (TII) is a critical pathological feature of kidney disease leading to renal fibrosis, and its treatment remains a major clinical challenge. We sought to explore the role of quercetin, a potential exosomes inhibitor, in exosomes release and TII. METHODS: The effects of quercetin on exosomes release and TII were examined by two TII mouse models: the unilateral ureteral obstruction (UUO) models and the LPS-induced mouse models. In vitro, exosomes-mediated crosstalk between tubular epithelial cells (TECs) and macrophages was performed to investigate the mechanisms by which quercetin inhibited exosomes and TII. RESULTS: In this study, we found that exosomes-mediated crosstalk between TECs and macrophages contributed to the development of TII. In vitro, exosomes released from LPS-stimulated TECs induced increased expression of inflammatory cytokines and fibrotic markers in Raw264·7 cells and vice versa. Interestingly, heat shock protein 70 (Hsp70) or Hsp90 proteins could control exosomes release from TECs and macrophages both in vivo and in vitro. Importantly, quercetin, a previously recognized heat shock protein inhibitor, could significantly reduce exosomes release in TII models by down-regulating Hsp70 or Hsp90. Quercetin abrogated exosomes-mediated intercellular communication, which attenuated TII and renal fibrosis accordingly. CONCLUSION: Quercetin could serve as a novel strategy for treatment of tubulointerstitial inflammation by inhibiting the exosomes-mediated crosstalk between tubules and macrophages.


Assuntos
Exossomos , Quercetina , Camundongos , Animais , Quercetina/farmacologia , Quercetina/uso terapêutico , Exossomos/metabolismo , Lipopolissacarídeos/farmacologia , Inflamação/metabolismo , Macrófagos/metabolismo , Fibrose , Células Epiteliais/metabolismo , Túbulos Renais/metabolismo , Túbulos Renais/patologia
9.
Cerebrovasc Dis ; 52(4): 471-479, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36509082

RESUMO

INTRODUCTION: The objective of this study was to define prehospital ultra-early neurological deterioration (UND) and to investigate the association with functional outcomes in patients with intracerebral hemorrhage (ICH). METHODS: We conducted a prospective cohort study of consecutive acute ICH patients. The stroke severity at onset and hospital admission was assessed using the Chongqing Stroke Scale (CQSS), and prehospital UND was defined as a CQSS increase of ≥2 points between symptoms onset and admission. Early neurological deterioration (END) was defined as the increase of ≥4 points in NIHSS score within the first 24 h after admission. Poor outcome was defined as a modified Rankin Scale (mRS) of 4-6 at 3 months. RESULTS: Prehospital UND occurred in 29 of 169 patients (17.2%). Patients with prehospital UND had a median admission NIHSS score of 17.0 as opposed to those without prehospital UND with a median NIHSS score of 8.5. There were three patterns of neurological deterioration: prehospital UND only in 21 of 169 patients (12.4%), END but without prehospital UND in 20 of 169 patients (11.8%), and continuous neurological deterioration in both phases in 8 patients (4.7%). Prehospital UND was associated with worse 3-month outcomes (median mRS score, 4.0 vs. 2.0, p = 0.002). After adjusting for age, time from onset to admission, END, and systolic blood pressure, prehospital UND was an independent predictor of poor outcome (odds ratio [OR] 3.27, 95% confidence interval [CI] 1.26-8.48, p = 0.015). CONCLUSION: Prehospital UND occurs in approximately 1 in 7 patients between symptom onset and admission and is associated with poor functional outcome in patients with ICH. Further research is needed to investigate the prehospital UND in the prehospital phase in the triage of patients with ICH.


Assuntos
Serviços Médicos de Emergência , Acidente Vascular Cerebral , Humanos , Estudos Prospectivos , Prevalência , Hemorragia Cerebral/diagnóstico , Hemorragia Cerebral/epidemiologia , Hemorragia Cerebral/terapia , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/terapia
10.
Acta Pharmacol Sin ; 44(12): 2455-2468, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37596398

RESUMO

Renal tubulointerstitial fibrosis (TIF) is considered as the final convergent pathway of diabetic nephropathy (DN) without effective therapies currently. MiRNAs play a key role in fibrotic diseases and become promising therapeutic targets for kidney diseases, while miRNA clusters, formed by the cluster arrangement of miRNAs on chromosomes, can regulate diverse biological functions alone or synergistically. In this study, we developed clustered miR-23a/27a/26a-loaded skeletal muscle satellite cells-derived exosomes (Exos) engineered with RVG peptide, and investigated their therapeutic efficacy in a murine model of DN. Firstly, we showed that miR-23a-3p, miR-26a-5p and miR-27a-3p were markedly decreased in serum samples of DN patients using miRNA sequencing. Meanwhile, we confirmed that miR-23a-3p, miR-26a-5p and miR-27a-3p were primarily located in proximal renal tubules and highly negatively correlated with TIF in db/db mice at 20 weeks of age. We then engineered RVG-miR-23a/27a/26a cluster loaded Exos derived from muscle satellite cells, which not only enhanced the stability of miR-23a/27a/26a cluster, but also efficiently delivered more miR-23a/27a/26a cluster homing to the injured kidney. More importantly, administration of RVG-miR-23a/27a/26a-Exos (100 µg, i.v., once a week for 8 weeks) significantly ameliorated tubular injury and TIF in db/db mice at 20 weeks of age. We revealed that miR-23a/27a/26a-Exos enhanced antifibrotic effects by repressing miRNA cluster-targeting Lpp simultaneously, as well as miR-27a-3p-targeting Zbtb20 and miR-26a-5p-targeting Klhl42, respectively. Knockdown of Lpp by injection of AAV-Lpp-RNAi effectively ameliorated the progression of TIF in DN mice. Taken together, we established a novel kidney-targeting Exo-based delivery system by manipulating the miRNA-23a/27a/26a cluster to ameliorate TIF in DN, thus providing a promising therapeutic strategy for DN.


Assuntos
Nefropatias Diabéticas , Exossomos , MicroRNAs , Células Satélites de Músculo Esquelético , Animais , Humanos , Camundongos , Diabetes Mellitus/terapia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/terapia , Exossomos/metabolismo , Fibrose , MicroRNAs/metabolismo , MicroRNAs/farmacologia , MicroRNAs/uso terapêutico , Células Satélites de Músculo Esquelético/metabolismo , Complicações do Diabetes/terapia
11.
Mol Ther ; 30(10): 3300-3312, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35581939

RESUMO

Cyclin-dependent kinase 12 (CDK12) plays a critical role in regulating gene transcription. CDK12 inhibition is a potential anticancer therapeutic strategy. However, several clinical trials have shown that CDK inhibitors might cause renal dysfunction and electrolyte disorders. CDK12 is abundant in renal tubular epithelial cells (RTECs), but the exact role of CDK12 in renal physiology remains unclear. Genetic knockout of CDK12 in mouse RTECs causes polydipsia, polyuria, and hydronephrosis. This phenotype is caused by defects in water reabsorption that are the result of reduced Na-K-2Cl cotransporter 2 (NKCC2) levels in the kidney. In addition, CKD12 knockout causes an increase in Slc12a1 (which encodes NKCC2) intronic polyadenylation events, which results in Slc12a1 truncated transcript production and NKCC2 downregulation. These findings provide novel insight into CDK12 being necessary for maintaining renal homeostasis by regulating NKCC2 transcription, which explains the critical water and electrolyte disturbance that occurs during the application of CDK12 inhibitors for cancer treatment. Therefore, there are safety concerns about the clinical use of these new anticancer drugs.


Assuntos
Antineoplásicos , Simportadores , Animais , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Eletrólitos , Rim/metabolismo , Camundongos , Membro 1 da Família 12 de Carreador de Soluto , Simportadores/genética , Água
12.
J Chem Phys ; 159(21)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38038204

RESUMO

We have studied the epitaxial growth of Si thin films on the Cd(0001) surface using low-temperature scanning tunneling microscopy. When deposited at low temperatures (100 K), Si atoms form dendritic islands with triangular shapes, indicating the existence of anisotropic edge diffusion in the process of Si film growth. After annealing to elevated temperatures, the triangular dendritic Si islands become hexagonal compact islands. Moreover, the 2D Si islands located on two different substrate terraces exhibit different heights due to the influence of quantum-well states in Cd(0001) films. Based on high-resolution scanning tunneling microscopy images, it is observed that the first, second, and third Si layers show the pseudomorphic 1 × 1 structure. In particular, the first and second layer islands reveal the opposite triangles, indicating the hexagonal close-packed stacking of Si atoms. These results provide important information for the growth of pristine Si films on metal substrates and the understanding of Si-metal interaction.

13.
Acta Radiol ; 64(8): 2446-2454, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37551019

RESUMO

BACKGROUND: The optimal treatment for some symptomatic, benign osteopathy lesions is yet to be identified. PURPOSE: To investigate the clinical efficiency of cementoplasty in managing symptomatic, benign osteopathy. MATERIAL AND METHODS: Between June 2006 and January 2020, we retrospectively enrolled 31 patients (10 men, 21 women; mean age = 46.5 ± 16.6 years; age range = 20-85 years), accounting for 34 treatment sites, who underwent percutaneous osteoplasty (14 treatment sites) and percutaneous vertebroplasty (20 treatment sites) with digital subtraction angiography (DSA) or DSA combined with computed tomography (CT). All the participants experienced different degrees of clinical symptoms with benign osteopathy lesions. The technical success of the procedure and occurrence of complications were recorded. Follow-up examinations were conducted to assess the treatment outcome using the MacNab criteria. RESULTS: All the participants had a diagnosis of benign osteopathy lesions before or after the cementoplasty. Surgery was successfully completed in all patients. Cement distributions were diffuse and homogeneous, with the complication of cement leakage occurring in 17.6% (6 of 34) of the lesions. The leakage occurred in the intervertebral disc (n = 1), the intra-articular space (n = 1), and the surrounding soft tissue (n = 4). Analysis of the treatment outcome using the MacNab criteria revealed that all patients showed improvement in their clinical symptoms to some extent and in the quality of life. CONCLUSION: Cementoplasty is an effective treatment for symptomatic, benign osteopathy, with the advantage of favorable clinical outcomes, and low complication rate.


Assuntos
Doenças Ósseas , Cementoplastia , Masculino , Humanos , Feminino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Estudos Retrospectivos , Qualidade de Vida , Cementoplastia/métodos , Cimentos Ósseos/uso terapêutico , Resultado do Tratamento
14.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835234

RESUMO

The basic helix-loop-helix (bHLH) transcription factors are widely distributed across eukaryotic kingdoms and participate in various physiological processes. To date, the bHLH family has been identified and functionally analyzed in many plants. However, systematic identification of bHLH transcription factors has yet to be reported in orchids. Here, 94 bHLH transcription factors were identified from the Cymbidium ensifolium genome and divided into 18 subfamilies. Most CebHLHs contain numerous cis-acting elements associated with abiotic stress responses and phytohormone responses. A total of 19 pairs of duplicated genes were found in the CebHLHs, of which 13 pairs were segmentally duplicated genes and six pairs were tandemly duplicated genes. Expression pattern analysis based on transcriptome data revealed that 84 CebHLHs were differentially expressed in four different color sepals, especially CebHLH13 and CebHLH75 of the S7 subfamily. The expression profiles of CebHLH13 and CebHLH75 in sepals, which are considered potential genes regulating anthocyanin biosynthesis, were confirmed through the qRT-PCR technique. Furthermore, subcellular localization results showed that CebHLH13 and CebHLH75 were located in the nucleus. This research lays a foundation for further exploration of the mechanism of CebHLHs in flower color formation.


Assuntos
Antocianinas , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Genoma de Planta , Família Multigênica , Filogenia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética
15.
Hum Genet ; 141(12): 1863-1873, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35729303

RESUMO

46,XY disorders of sex development (DSD) present with diverse phenotypes and complicated genetic causes. Precise genetic diagnosis contributes to accurate management, and targeted next-generation sequencing (NGS) and whole-exome sequencing are powerful tools for investigating DSD. However, the prevalent variants resulting in 46,XY DSD remain unclear, especially those associated with mild forms, such as isolated hypospadias, inguinal cryptorchidism, and micropenis. From 2019 to 2021, 74 patients with 46,XY DSD (48 typical and 26 mild) from the First Affiliated Hospital of Sun Yat-sen University were enrolled in our cohort study for targeted NGS or whole-exome sequencing. Our targeted 46,XY DSD panel included 108 genes involved in disorders of gonadal development and differentiation, steroid hormone synthesis and activation, persistent Müllerian duct syndrome, idiopathic hypogonadotropic hypogonadism, syndromic disorder, and others. Variants were classified as pathogenic, likely pathogenic, variant of uncertain significance, likely benign, or benign following the American College of Medical Genetics guidelines. As a result, 28 of 74 (37.8%) patients with pathogenic and/or likely pathogenic variants acquired genetic diagnoses. The Mild DSD patients acquired a diagnosis rate of 30.7%. We detected 44 variants in 28 DSD genes from 31 patients, including 33 novel and 11 reported variants. Heterozygous (65%) and missense (70.5%) variants were the most common. Variants associated with steroid hormone synthesis and activation were the main genetic causes of 46,XY DSD. In conclusion, 46,XY DSD manifests as a series of complicated polygenetic diseases. NGS reveals prevalent variants and improves the genetic diagnoses of 46,XY DSD, regardless of severity.


Assuntos
Transtorno 46,XY do Desenvolvimento Sexual , Masculino , Humanos , Estudos de Coortes , Transtorno 46,XY do Desenvolvimento Sexual/genética , Sequenciamento de Nucleotídeos em Larga Escala , Esteroides , Hormônios , Mutação
16.
Phys Chem Chem Phys ; 24(29): 17744-17750, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35843214

RESUMO

The 2D self-assemblies and structural transitions of pentacene on a Cd(0001) surface have been investigated with low temperature scanning tunneling microscopy (STM). With increasing coverage, pentacene molecules show a structural evolution from the initial disordered gas-like phase through the porous network phase to the herringbone phase, and finally to the brickwall phase at the full monolayer. In particular, orientational frustration and cooperative rotation of pentacene molecules take place in the herringbone phase. Furthermore, successive STM scanning leads to structural interconversions between the porous network phase, herringbone phase, and brickwall phase, indicating the metastability of the 2D assembled structures of pentacene on Cd(0001). These structural transitions and interconversion can be attributed to the interplay between the repulsive electrostatic forces resulting from the charge transfer from the substrate to pentacene and the attractive effects originating from dipole-dipole interactions and intermolecular van der Waals forces.

17.
Phys Chem Chem Phys ; 24(17): 10292-10296, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35437551

RESUMO

Chiral resolution is of fundamental importance to conglomerate or racemate crystallization. Here we demonstrate that the spontaneous chiral resolution of pentahelicene racemates occurred in the monolayer domains. When deposited on a Cd(0001) surface, pentahelicene molecules crystallize into a commensurate (6 × 6)R0° structure built mainly from homochiral trimers. Spontaneous chirality separation takes place in the form of opposite mirror domains, where 2D enantiomorphism is not expressed by the oblique adlattice, but by the supramolecular chirality of the pentahelicene trimers. Furthermore, annealing the sample or extreme close-packing lead to the presence of lattice handedness through the formation of a porous network structure or an edge-on phase. These results provide valuable insight for 2D conglomerate crystallization and stereochemical recognition.

18.
J Am Soc Nephrol ; 32(10): 2467-2483, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34127536

RESUMO

BACKGROUND: AKI is a significant public health problem with high morbidity and mortality. Unfortunately, no definitive treatment is available for AKI. RNA interference (RNAi) provides a new and potent method for gene therapy to tackle this issue. METHODS: We engineered red blood cell-derived extracellular vesicles (REVs) with targeting peptides and therapeutic siRNAs to treat experimental AKI in a mouse model after renal ischemia/reperfusion (I/R) injury and unilateral ureteral obstruction (UUO). Phage display identified peptides that bind to the kidney injury molecule-1 (Kim-1). RNA-sequencing (RNA-seq) characterized the transcriptome of ischemic kidney to explore potential therapeutic targets. RESULTS: REVs targeted with Kim-1-binding LTH peptide (REVLTH) efficiently homed to and accumulated at the injured tubules in kidney after I/R injury. We identified transcription factors P65 and Snai1 that drive inflammation and fibrosis as potential therapeutic targets. Taking advantage of the established REVLTH, siRNAs targeting P65 and Snai1 were efficiently delivered to ischemic kidney and consequently blocked the expression of P-p65 and Snai1 in tubules. Moreover, dual suppression of P65 and Snai1 significantly improved I/R- and UUO-induced kidney injury by alleviating tubulointerstitial inflammation and fibrosis, and potently abrogated the transition to CKD. CONCLUSIONS: A red blood cell-derived extracellular vesicle platform targeted Kim-1 in acutely injured mouse kidney and delivered siRNAs for transcription factors P65 and Snai1, alleviating inflammation and fibrosis in the tubules.


Assuntos
Injúria Renal Aguda/terapia , Vesículas Extracelulares , Terapia Genética/métodos , Receptor Celular 1 do Vírus da Hepatite A/genética , Fatores de Transcrição da Família Snail/genética , Fator de Transcrição RelA/genética , Injúria Renal Aguda/patologia , Animais , Modelos Animais de Doenças , Eritrócitos , Fibrose , Inflamação/terapia , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Masculino , Camundongos , Peptídeos , Interferência de RNA , RNA Interferente Pequeno/uso terapêutico , Traumatismo por Reperfusão/complicações , Fatores de Transcrição da Família Snail/metabolismo , Fator de Transcrição RelA/metabolismo , Obstrução Ureteral/complicações
19.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36142373

RESUMO

Phalaenopsis orchids are popular worldwide due to their high ornamental and economic value; the spike and inflorescence formation of their flowers could be efficiently controlled under proper conditions. In this study, transcriptomic profiles and endogenous hormone changes were investigated to better understand the spike formation of Phalaenopsis. Morphological observations revealed four spike initiation statuses (i.e., S0: the status refers to axillary buds remaining dormant in the leaf axils; S1: the status refers to the 0.5 cm-long initial spike; S2: the status refers to the 1 cm-long spike; S3: the status refers to the 3 cm-long spike) during the process of spike development, while anatomical observations revealed four related statuses of inflorescence primordium differentiation. A total of 4080 differentially expressed genes were identified based on pairwise comparisons of the transcriptomic data obtained from the S0 to S3 samples; high levels of differential gene expression were mostly observed in S1 vs. S2, followed by S0 vs. S1. Then, the contents of 12 endogenous hormones (e.g., irindole-3-acetic acid (IAA), salicylic acid (SA), abscisic acid (ABA), gibberellins, and cytokinins) were measured. The results showed that the ABA content was decreased from S0 to S1, while the gibberellic acid 1 (GA1) content exhibited an opposite trend, indicating the reduction in ABA levels combined with the increase in GA1 levels in S0 promoted the axillary bud dormancy breaking, preparing for the following spike initiation. The GA20 oxidase and ABA 8'-hydroxylase genes, which are involved in endogenous hormone metabolism and signaling pathways, displayed similar expression patterns, suggesting they were probably the key genes participating in the GA and ABA regulation. Taken together, the findings of this study indicate that GA and ABA may be the key endogenous hormones breaking the dormancy and promoting the germination of axillary buds in Phalaenopsis.


Assuntos
Giberelinas , Orchidaceae , Ácido Abscísico/metabolismo , Citocininas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Hormônios , Orchidaceae/genética , Orchidaceae/metabolismo , Oxirredutases/metabolismo , Dormência de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Ácido Salicílico , Transcriptoma
20.
Am J Physiol Renal Physiol ; 321(2): F225-F235, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34229478

RESUMO

Oxygen homeostasis disturbances play a critical role in the pathogenesis of acute kidney injury (AKI). The transcription factor hypoxia-inducible factor-1 (HIF-1) is a master regulator of adaptive responses to hypoxia. Aside from posttranslational hydroxylation, the mechanism of HIF-1 regulation in AKI remains largely unclear. In this study, the mechanism of HIF-α regulation in AKI was investigated. We found that tubular HIF-1α expression significantly increased at the transcriptional level in ischemia-reperfusion-, unilateral ureteral obstruction-, and sepsis-induced AKI models, which was closely associated with macrophage-dependent inflammation. Meanwhile, NF-κB, which plays a central role in the inflammation response, was involved in the increasing expression of HIF-1α in AKI, as evidenced by pharmacological modulation (NF-κB inhibitor BAY11-7082). Mechanistically, NF-κB directly bound to the HIF-1α promoter and enhanced its transcription, which occurred not only under hypoxic conditions but also under normoxic conditions. Moreover, the induced HIF-1α by inflammation protected against tubular injury in AKI. Thus, our findings not only provide novel insights into HIF-1 regulation in AKI but also offer to understand the pathophysiology of kidney diseases.NEW & NOTEWORTHY Here, the mechanism of hypoxia-inducible factor-α (HIF-α) regulation in acute kidney injury (AKI) was investigated. We found that tubular HIF-1α expression significantly increased at the transcriptional level, which was closely associated with macrophage-dependent inflammation. Meanwhile, NF-κB was involved in the increasing expression of HIF-1α in AKI. Mechanistically, NF-κB directly bound to the HIF-1α promoter and enhanced its transcription. Our findings not only provide novel insights into HIF-1 regulation in AKI but also offer to understand the pathophysiology of kidney diseases.


Assuntos
Injúria Renal Aguda/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Rim/metabolismo , NF-kappa B/metabolismo , Injúria Renal Aguda/genética , Animais , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Inflamação/genética , Inflamação/metabolismo , Rim/efeitos dos fármacos , Camundongos , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , Nitrilas/farmacologia , Sulfonas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA