Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Oral Dis ; 28(7): 1968-1978, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33908127

RESUMO

OBJECTIVES: To evaluate the effect of zoledronic acid (ZA) on human umbilical vein endothelial cells (HUVECs) attached to different surfaces. MATERIALS AND METHODS: A total of three groups were evaluated in this study: sandblasting and acid etching (SLA) + HUVECs; mechanically polished (MP) + HUVECs; and plastic cell culture plates + HUVECs. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, surface roughness and water contact angle were tested for titanium surface characterisation. ZA was added at different concentrations (0, 1, 10, 50 and 100 µM). Cell adhesion, proliferation, viability, apoptosis and gene expression were evaluated. RESULTS: Mechanically polished and SLA surfaces showed negative effects on cell adhesion and proliferation and promoted cell apoptosis with 100 µM ZA (p < .05). The highest expression of intercellular adhesion molecule-1 (ICAM-1) and angiopoietin-1 was found on SLA surfaces (p < .01). The lowest expression of platelet-endothelial cell adhesion molecule-1 and ICAM-1 was found on MP surfaces (p < .05). A significant decrease in von Willebrand factor was detected on MP and SLA surfaces (p < .001). CONCLUSIONS: Zoledronic acid has an anti-angiogenic effect on HUVECs attached to titanium implants, while the SLA surface might stimulate HUVECs to express angiogenic and adhesive factor genes despite ZA treatment.


Assuntos
Molécula 1 de Adesão Intercelular , Titânio , Adesão Celular , Células Endoteliais da Veia Umbilical Humana , Humanos , Microscopia Eletrônica de Varredura , Propriedades de Superfície , Titânio/farmacologia , Ácido Zoledrônico/farmacologia
2.
Microb Pathog ; 158: 105100, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34302932

RESUMO

OBJECTIVES: Although the mature peri-implant biofilm composition is well studied, there is very little information on the succession of in vivo dental implant colonization. The aim of this study was to characterize the temporal changes and diversity of peri-implant supra-mucosal and sub-mucosal microbiota during the process of the plaque maturation. MATERIALS AND METHODS: Dental implants (n = 25) were placed in the mandible of 3 beagle dogs. Illumina MiSeq sequencing of the hypervariable V3-V4 region of the 16S rRNA gene amplicons was used to characterize the supra/sub-mucosal microbiota in the peri-implant niches at 1day (T1), 7days (T2), 14days (T3), 21days (T4) and 28days (T5) after Phase Ⅱ surgery of the healing abutment placement. QIIME, Mothur, LEfSe and R-package were used for downstream analysis. RESULTS: A total of 1184 operational taxonomic units (OTUs), assigned into 22 phyla, 264 genera and 339 species were identified. In supra-mucosal niches, the alpha parameters of shannon, sobs and chao1 displayed significant differences between T1 and other time-points. However, in sub-mucosal niches, only sobs, chao1, and ace indexes displayed significant differences between T1 and T3, and T1 and T5. Beta-diversity showed statistically significant difference between T1 and T2, T3, T4, T5 within both sub-mucosal and supra-mucosal plaque. The phyla Bacteroidetes, Proteobacteria and Firmicutes were the most dominant phyla of both sub-mucosal and supra-mucosal niches at all time-points and Firmicutes increased during the maturation of peri-implant plaque. At the genus level, Neisseria decreased significantly after T1 suggesting the establishment of an anaerobic microenvironment. A decrease of Porphyromonas during the formation of sub-mucosal microbial community was also detected. Co-occurrence network analysis exhibited a more complicated co-occurrence relationship of bacterial species in the sub-mucosal niches. Fusobacterium nucleatum, Filifactor villosus, and some other species may play a crucial role in biofilm maturation. CONCLUSIONS: The present results suggested that the development of peri-implant biofilm followed a similar pattern to dental plaque formation. Sub-mucosal biofilm may go through a more complicated procedure of maturation than supra-mucosal biofilm.


Assuntos
Implantes Dentários , Microbiota , Animais , Biofilmes , Clostridiales , Cães , RNA Ribossômico 16S/genética
3.
J Nanobiotechnology ; 19(1): 78, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741002

RESUMO

BACKGROUND: Micro/nano-textured hierarchical titanium topography is more bioactive and biomimetic than smooth, micro-textured or nano-textured titanium topographies. Bone marrow mesenchymal stem cells (BMSCs) and exosomes derived from BMSCs play important roles in the osseointegration of titanium implants, but the effects and mechanisms of titanium topography on BMSCs-derived exosome secretion are still unclear. This study determined whether the secretion behavior of exosomes derived from BMSCs is differently affected by different titanium topographies both in vitro and in vivo. RESULTS: We found that both micro/nanonet-textured hierarchical titanium topography and micro/nanotube-textured hierarchical titanium topography showed favorable roughness and hydrophilicity. These two micro/nano-textured hierarchical titanium topographies enhanced the spreading areas of BMSCs on the titanium surface with stronger promotion of BMSCs proliferation in vitro. Compared to micro-textured titanium topography, micro/nano-textured hierarchical titanium topography significantly enhanced osseointegration in vivo and promoted BMSCs to synthesize and transport exosomes and then release these exosomes into the extracellular environment both in vitro and in vivo. Moreover, micro/nanonet-textured hierarchical titanium topography promoted exosome secretion by upregulating RAB27B and SMPD3 gene expression and micro/nanotube-textured hierarchical titanium topography promoted exosome secretion due to the strongest enhancement in cell proliferation. CONCLUSIONS: These findings provide evidence that micro/nano-textured hierarchical titanium topography promotes exosome biogenesis and extracellular secretion for enhanced osseointegration. Our findings also highlight that the optimized titanium topography can increase exosome secretion from BMSCs, which may promote osseointegration of titanium implants.


Assuntos
Exossomos , Nanotecnologia/métodos , Nanotubos/química , Osseointegração , Titânio/química , Animais , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Humanos , Masculino , Células-Tronco Mesenquimais/patologia , Osteogênese , Próteses e Implantes , Ratos , Propriedades de Superfície
4.
Front Bioeng Biotechnol ; 9: 676874, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996786

RESUMO

Lithium (Li) reportedly has anti-bacterial properties. Thus, it is an ideal option to modify barrier membranes used for guided bone regeneration to inhibit the bacterial adhesion. The aims of this study were to fabricate and characterize nanofibrous poly(L-lactic acid) (PLLA) membranes containing Li, and investigate their antibacterial effects on Porphyromonas gingivalis and Actinobacillus actinomycetemcomitans in vitro. Li (5%Li, 10%Li, and 15%Li)-loaded nanofibrous PLLA membranes were fabricated using an electrospinning technique, and characterized via scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, a contact angle measuring device, and a universal testing machine. Sustained release of Li ions was measured over a 14-day period and biocompatibility of the Li-PLLA membranes was investigated. Evaluation of bacterial adhesion and antibacterial activity were conducted by bacterial colony counting, LIVE/DEAD staining and inhibition zone method using P.gingivalis and A.actinomycetemcomitans. Of the three Li-loaded membranes assessed, the 10%Li-PLLA membrane had the best mechanical properties and biocompatibility. Adhesion of both P.gingivalis and A.actinomycetemcomitans on Li-PLLA membranes was significantly lower than adhesion on pure PLLA membranes, particularly with regard to the 10%Li and 15%Li membranes. Significant antibacterial activity of Li-PLLA were also observed against according to the inhibition zone test. Given their better mechanical properties, biocompatibility, and antibacterial activity, PLLAs with 10%Li are a better choice for future clinical utilization. The pronounced antibacterial effects of Li-loaded PLLA membranes sets the stage for further application in guided bone regeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA