Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
World J Microbiol Biotechnol ; 40(10): 303, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39153119

RESUMO

Dye-decolorizing peroxidases (DyPs) belong to a novel superfamily of heme peroxidases that can oxidize recalcitrant compounds. In the current study, the GlDyP2 gene from Ganoderma lucidum was heterologously expressed in Escherichia coli, and the enzymatic properties of the recombinant GlDyP2 protein were investigated. The GlDyP2 protein could oxidize not only the typical peroxidase substrate ABTS but also two lignin substrates, namely guaiacol and 2,6-dimethoxy phenol (DMP). For the ABTS substrate, the optimum pH and temperature of GlDyP2 were 4.0 and 35 °C, respectively. The pH stability and thermal stability of GlDyP2 were also measured; the results showed that GlDyP2 could function normally in the acidic environment, with a T50 value of 51 °C. Moreover, compared to untreated controls, the activity of GlDyP2 was inhibited by 1.60 mM of Mg2+, Ni2+, Mn2+, and ethanol; 0.16 mM of Cu2+, Zn2+, methanol, isopropyl alcohol, and Na2EDTA·2H2O; and 0.016 mM of Fe2+ and SDS. The kinetic constants of recombinant GlDyP2 for oxidizing ABTS, Reactive Blue 19, guaiacol, and DMP were determined; the results showed that the recombination GlDyP2 exhibited the strongest affinity and the most remarkable catalytic efficiency towards guaiacol in the selected substrates. GlDyP2 also exhibited decolorization and detoxification capabilities towards several dyes, including Reactive Blue 19, Reactive Brilliant Blue X-BR, Reactive Black 5, Methyl Orange, Trypan Blue, and Malachite Green. In conclusion, GlDyP2 has good application potential for treating dye wastewater.


Assuntos
Corantes , Estabilidade Enzimática , Escherichia coli , Guaiacol , Proteínas Recombinantes , Reishi , Temperatura , Corantes/metabolismo , Corantes/química , Reishi/genética , Reishi/enzimologia , Reishi/metabolismo , Concentração de Íons de Hidrogênio , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Guaiacol/metabolismo , Guaiacol/análogos & derivados , Biodegradação Ambiental , Cinética , Benzotiazóis/metabolismo , Especificidade por Substrato , Lignina/metabolismo , Oxirredução , Peroxidase/genética , Peroxidase/metabolismo , Peroxidase/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Peroxidases/genética , Peroxidases/metabolismo , Peroxidases/química , Poluentes Químicos da Água/metabolismo , Compostos Azo/metabolismo , Águas Residuárias/microbiologia , Águas Residuárias/química , Ácidos Sulfônicos/metabolismo , Antraquinonas , Corantes de Rosanilina
2.
BMC Genomics ; 24(1): 447, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553575

RESUMO

BACKGROUND: Lonicera japonica Thunb. is widely used in traditional Chinese medicine. Medicinal L. japonica mainly consists of dried flower buds and partially opened flowers, thus flowers are an important quality indicator. MADS-box genes encode transcription factors that regulate flower development. However, little is known about these genes in L. japonica. RESULTS: In this study, 48 MADS-box genes were identified in L. japonica, including 20 Type-I genes (8 Mα, 2 Mß, and 10 Mγ) and 28 Type-II genes (26 MIKCc and 2 MIKC*). The Type-I and Type-II genes differed significantly in gene structure, conserved domains, protein structure, chromosomal distribution, phylogenesis, and expression pattern. Type-I genes had a simpler gene structure, lacked the K domain, had low protein structure conservation, were tandemly distributed on the chromosomes, had more frequent lineage-specific duplications, and were expressed at low levels. In contrast, Type-II genes had a more complex gene structure; contained conserved M, I, K, and C domains; had highly conserved protein structure; and were expressed at high levels throughout the flowering period. Eleven floral homeotic MADS-box genes that are orthologous to the proposed Arabidopsis ABCDE model of floral organ identity determination, were identified in L. japonica. By integrating expression pattern and protein interaction data for these genes, we developed a possible model for floral organ identity determination. CONCLUSION: This study genome-widely identified and characterized the MADS-box gene family in L. japonica. Eleven floral homeotic MADS-box genes were identified and a possible model for floral organ identity determination was also developed. This study contributes to our understanding of the MADS-box gene family and its possible involvement in floral organ development in L. japonica.


Assuntos
Genoma de Planta , Lonicera , Lonicera/genética , Lonicera/metabolismo , Proteínas de Domínio MADS/metabolismo , Fatores de Transcrição/metabolismo , Família Multigênica , Filogenia , Regulação da Expressão Gênica de Plantas , Flores , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
BMC Plant Biol ; 23(1): 216, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37098465

RESUMO

BACKGROUND: Drought has become a major environmental problem affecting crop production. Members of the WRKY family play important roles in plant development and stress responses. However, their roles in mint have been barely explored. RESULTS: In this study, we isolated a drought-inducible gene McWRKY57-like from mint and investigated its function. The gene encodes a group IIc WRKY transcription factor, McWRKY57-like, which is a nuclear protein with a highly conserved WRKY domain and a C2H2 zinc-finger structure, and has transcription factor activity. Its expression levels were examined in different tissues of mint and under the treatment of mannitol, NaCl, abscisic acid, and methyl jasmonate. We found that McWRKY57-like overexpression in Arabidopsis significantly increased drought tolerance. Further studies showed that under drought stress, McWRKY57-like-overexpressing plants had higher chlorophyll, soluble sugar, soluble protein, and proline contents but lower water loss rate and malondialdehyde content than wild-type plants. Moreover, the activities of antioxidant enzymes catalase, superoxide dismutase, and peroxidase were enhanced in McWRKY57-like transgenic plants. Furthermore, qRT-PCR analysis revealed that the drought-related genes AtRD29A, AtRD29B, AtRD20, AtRAB18, AtCOR15A, AtCOR15B, AtKIN2, and AtDREB1A were upregulated in McWRKY57-like transgenic plants than in wild-type Arabidopsis under simulated drought conditions. CONCLUSION: These data demonstrated that McWRKY57-like conferred drought tolerance in transgenic Arabidopsis by regulating plant growth, osmolyte accumulation and antioxidant enzyme activities, and the expression of stress-related genes. The study indicates that McWRKY57-like plays a positive role in drought response in plants.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Resistência à Seca , Antioxidantes/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo , Secas , Estresse Fisiológico/genética
4.
Arch Microbiol ; 205(12): 384, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37975884

RESUMO

Ganoderma lingzhi is a traditional Chinese medicine that has been used to improve health and longevity for thousands of years. It is usually cultivated on hardwood log- or sawdust-based formulations. Conversely, in this study, we used Miscanthus sacchariflorus (MSF), M. floridulus, and M. sinensis (MSS), fast-growing perennial grasses widely distributed in China, for G. lingzhi cultivation. Mycelial growth rate, activities of lignin-degrading enzymes on colonized mushroom substrates, and expression levels of CAZymes and laccase genes based on different substrates were analyzed. Total triterpenoids, sterols, and polysaccharides content of fruiting bodies obtained from different substrates were investigated. The activities of laccase and manganese peroxidase in mycelia increased in the MSF- and MSS-based formulations compared with that in the sawdust-based formulation. The results of mycelial growth- and cultivation-related experiments showed that the Miscanthus substrates could be used as the substrates for cultivating G. lingzhi. The content of active ingredients, namely triterpenoids, sterols, and polysaccharides, in fruiting bodies cultivated on the Miscanthus substrates did not decrease compared with those in substrate obtained from the sawdust-based formulation. Therefore, the present study provides alternative substrates for the cultivation of G. lingzhi, and a reference for better utilization of inexpensive substrate in future.


Assuntos
Reishi , Triterpenos , Lacase/genética , Lacase/metabolismo , Reishi/metabolismo , Poaceae , Polissacarídeos/metabolismo , Esteróis/metabolismo
5.
Int J Mol Sci ; 25(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38203542

RESUMO

The current study aims to investigate the therapeutic potential of luteolin (Lut), a naturally occurring flavonoid found in various medicinal plants, for treating chronic obstructive pulmonary disease (COPD) through both in vitro and in vivo studies. The results demonstrated that Lut increased body weight, reduced lung tissue swelling and lung damage indices, mitigated systemic oxidative stress levels, and decreased alveolar fusion in cigarette smoke (CS)- and lipopolysaccharide (LPS)-induced COPD mice. Additionally, Lut was observed to downregulate the expression of the TRPV1 and CYP2A13 proteins while upregulating SIRT6 and NRF2 protein expression in CS + LPS-induced COPD mice and cigarette smoke extract (CSE)-treated A549 cells. The concentrations of total reactive oxygen species (ROS) and mitochondrial ROS in A549 cells induced by CSE significantly increased. Moreover, CSE caused a notable elevation of intracellular Ca2+ levels in A549 cells. Importantly, Lut exhibited inhibitory effects on the inward flow of Ca2+ and attenuated the overproduction of mitochondrial and intracellular ROS in A549 cells treated with CSE. In conclusion, Lut demonstrated a protective role in alleviating oxidative stress and inflammation in CS + LPS-induced COPD mice and CSE-treated A549 cells by regulating TRPV1/SIRT6 and CYP2A13/NRF2 signaling pathways.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Sirtuínas , Animais , Camundongos , Luteolina , Fator 2 Relacionado a NF-E2 , Espécies Reativas de Oxigênio , Lipopolissacarídeos , Sistema Enzimático do Citocromo P-450 , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/etiologia , Estresse Oxidativo , Glicosiltransferases , Transdução de Sinais , Canais de Cátion TRPV
6.
Molecules ; 28(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36838752

RESUMO

Due to the overuse of antibiotics, bacterial resistance has markedly increased to become a global problem and a major threat to human health. Fortunately, in recent years, various new antibiotics have been developed through both improvements to traditional antibiotics and the discovery of antibiotics with novel mechanisms with the aim of addressing the decrease in the efficacy of traditional antibiotics. This manuscript reviews the antibiotics that have been approved for marketing in the last 20 years with an emphasis on the antibacterial properties, mechanisms, structure-activity relationships (SARs), and clinical safety of these antibiotics. Furthermore, the current deficiencies, opportunities for improvement, and prospects of antibiotics are thoroughly discussed to provide new insights for the design and development of safer and more potent antibiotics.


Assuntos
Antibacterianos , Infecções Bacterianas , Humanos , Antibacterianos/farmacologia , Relação Estrutura-Atividade , Infecções Bacterianas/tratamento farmacológico
7.
BMC Plant Biol ; 22(1): 219, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35477355

RESUMO

BACKGROUND: Mentha canadensis L. has important economic value for the production of essential oils, which are synthesised, secreted and stored in peltate glandular trichomes. As a typical multicellular secretory trichome, glandular trichomes are important biological factories for the synthesis of some specialised metabolites. However, little is known about the molecular mechanism of glandular trichome development in M. canadensis. RESULTS: In this study, the R2R3-MYB transcription factor gene McMIXTA was isolated to investigate its function in glandular trichome development. Bioinformatics analysis indicated that McMIXTA belonged to the subgroup 9 R2R3-MYB, with a R2R3 DNA-binding domain and conserved subgroup 9 motifs. A subcellular localisation assay indicated that McMIXTA was localised in the nucleus. Transactivation analysis indicated that McMIXTA was a positive regulator, with transactivation regions located between positions N253 and N307. Yeast two-hybrid and bimolecular fluorescence complementation assays showed that McMIXTA formed a complex with McHD-Zip3, a trichome development-related HD-ZIP IV transcription factor. Overexpression of McMIXTA in Mentha × piperita L. caused an increase in peltate glandular trichomes density of approximately 25% on the leaf abaxial surface. CONCLUSIONS: Our results demonstrated that the subgroup 9 R2R3-MYB transcription factor McMIXTA has a positive effect on regulating peltate glandular trichome development and the MIXTA/HD-ZIP IV complexes might be conserved regulators for glandular trichome initiation. These results provide useful information for revealing the regulatory mechanism of multicellular glandular trichome development.


Assuntos
Mentha , Óleos Voláteis , Óleos Voláteis/metabolismo , Folhas de Planta/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tricomas/metabolismo
8.
Arch Microbiol ; 204(8): 514, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35867171

RESUMO

Ganoderma lucidum is an edible mushroom highly regarded in the traditional Chinese medicine. To better understand the molecular mechanisms underlying fruiting body development in G. lucidum, transcriptome analysis based on RNA sequencing was carried out on different developmental stages: mycelium (G1); primordium (G2); young fruiting body (G3); mature fruiting body (G4); fruiting body in post-sporulation stage (G5). In total, 26,137 unigenes with an average length of 1078 bp were de novo assembled. Functional annotation of transcriptomes matched 72.49% of the unigenes to known proteins available in at least one database. Differentially expressed genes (DEGs) were identified between the evaluated stages: 3135 DEGs in G1 versus G2; 120 in G2 versus G3; 3919 in G3 versus G4; and 1012 in G4 versus G5. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEGs identified in G1 versus G2 revealed that, in addition to global and overview maps, enriched pathways were related to amino acid metabolism and carbohydrate metabolism. In contrast, DEGs identified in G2 versus G3 were mainly assigned to the category of metabolism of amino acids and their derivatives, comprising mostly upregulated unigenes. In addition, highly expressed unigenes associated with the transition between different developmental stages were identified, including those encoding hydrophobins, cytochrome P450s, extracellular proteases, and several transcription factors. Meanwhile, highly expressed unigenes related to meiosis such as DMC1, MSH4, HOP1, and Mek1 were also analyzed. Our study provides important insights into the molecular mechanisms underlying fruiting body development and sporulation in G. lucidum.


Assuntos
Reishi , Transcriptoma , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Micélio , Reishi/genética
9.
Molecules ; 27(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35956890

RESUMO

Inappropriate and disproportionate antibiotic use contributes immensely to the development of antibiotic resistance in bacterial species associated with food contamination. Therefore, alternative strategies to treat multidrug-resistant (MDR) bacterial infections are urgently needed. In this study, verbascoside was shown to exhibit excellent antibacterial activity and synergistic effects in combination with cell wall synthesis-inhibiting antibiotics, indicating that it can be used as an adjuvant to restore or increase the activity of antibiotics against resistant pathogens. In a mechanistic study, higher concentrations of verbascoside resulted in a longer lag phase and a lower specific exponential-phase growth rate of bacteria. Furthermore, verbascoside exerted its antimicrobial activity through multiple mechanisms, including cell membrane dysfunction, biofilm eradication and changes in cell morphology. The promising antibacterial activity and in vitro safety assessment results suggested that verbascoside can be used as a food additive for fresh meat preservation. Treatment with medium and high doses of verbascoside caused significant bacterial death in meat samples, slowed the spoilage rate, and extended the shelf life. Collectively, verbascoside is expected to be useful as an antibiotic adjuvant to prevent or treat resistant bacteria-related infections and an alternative novel antimicrobial additive in the food industry.


Assuntos
Antibacterianos , Carne , Antibacterianos/farmacologia , Bactérias , Farmacorresistência Bacteriana Múltipla , Glucosídeos , Carne/microbiologia , Testes de Sensibilidade Microbiana , Fenóis
10.
Biochem Biophys Res Commun ; 537: 78-84, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33387886

RESUMO

The prostate cancer (PCa) poses serious threat to men's health. The androgen receptor (AR) is essential for normal prostate development and prostate cancer progression. We identified a novel lncRNA PCLN16 which is significantly correlated with AR signaling during prostate cancer progression. The AR-regulated PCLN16 was abundantly overexpressed in localized or metastatic prostate cancer tissues and AR-dependent cell lines. PCLN16 silence suppressed AR signaling and tumor growth. PCLN16 interacted with Huntingtin interacting protein 1 (HIP1) transcript to reduce HIP1 degradation. Therefore, PCLN16 could augment AR signaling via a novel positive feedback loop. Our experiments support an oncogenic role for PCLN16 and suggest that PCLN16 might serve as a potential target for therapeutic intervention.


Assuntos
Neoplasias da Próstata/genética , RNA Longo não Codificante/metabolismo , Receptores Androgênicos/genética , Transdução de Sinais , Sequência de Bases , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Masculino , Neoplasias da Próstata/patologia , Estabilidade de RNA/genética , RNA Longo não Codificante/genética , Receptores Androgênicos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Int J Mol Sci ; 22(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466786

RESUMO

Glycerol-3-phosphate acyltransferases (GPATs) play an important role in glycerolipid biosynthesis, and are mainly involved in oil production, flower development, and stress response. However, their roles in regulating plant height remain unreported. Here, we report that Arabidopsis GPAT1 is involved in the regulation of plant height. GUS assay and qRT-PCR analysis in Arabidopsis showed that GPAT1 is highly expressed in flowers, siliques, and seeds. A loss of function mutation in GPAT1 was shown to decrease seed yield but increase plant height through enhanced cell length. Transcriptomic and qRT-PCR data revealed that the expression levels of genes related to gibberellin (GA) biosynthesis and signaling, as well as those of cell wall organization and biogenesis, were significantly upregulated. These led to cell length elongation, and thus, an increase in plant height. Together, our data suggest that knockout of GPAT1 impairs glycerolipid metabolism in Arabidopsis, leading to reduced seed yield, but promotes the biosynthesis of GA, which ultimately enhances plant height. This study provides new evidence on the interplay between lipid and hormone metabolism in the regulation of plant height.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Glicerol-3-Fosfato O-Aciltransferase/genética , Mutação , Óleos de Plantas/metabolismo , Caules de Planta/genética , Sementes/genética , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Forma Celular/genética , Flores/genética , Flores/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Caules de Planta/citologia , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas , Sementes/metabolismo
12.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34445565

RESUMO

Jasmonate ZIM-domain (JAZ) proteins are the crucial transcriptional repressors in the jasmonic acid (JA) signaling process, and they play pervasive roles in plant development, defense, and plant specialized metabolism. Although numerous JAZ gene families have been discovered across several plants, our knowledge about the JAZ gene family remains limited in the economically and medicinally important Chinese herb Mentha canadensis L. Here, seven non-redundant JAZ genes named McJAZ1-McJAZ7 were identified from our reported M. canadensis transcriptome data. Structural, amino acid composition, and phylogenetic analysis showed that seven McJAZ proteins contained the typical zinc-finger inflorescence meristem (ZIM) domain and JA-associated (Jas) domain as conserved as those in other plants, and they were clustered into four groups (A-D) and distributed into five subgroups (A1, A2, B1, B2, and D). Quantitative real-time PCR (qRT-PCR) analysis showed that seven McJAZ genes displayed differential expression patterns in M. canadensis tissues, and preferentially expressed in flowers. Furthermore, the McJAZ genes expression was differentially induced after Methyl jasmonate (MeJA) treatment, and their transcripts were variable and up- or down-regulated under abscisic acid (ABA), drought, and salt treatments. Subcellular localization analysis revealed that McJAZ proteins are localized in the nucleus or cytoplasm. Yeast two-hybrid (Y2H) assays demonstrated that McJAZ1-5 interacted with McCOI1a, a homolog of Arabidopsis JA receptor AtCOI1, in a coronatine-dependent manner, and most of McJAZ proteins could also form homo- or heterodimers. This present study provides valuable basis for functional analysis and exploitation of the potential candidate McJAZ genes for developing efficient strategies for genetic improvement of M. canadensis.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Mentha/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Transcriptoma , Sequência de Aminoácidos , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Mentha/genética , Mentha/crescimento & desenvolvimento , Família Multigênica , Proteínas de Plantas/genética , Homologia de Sequência
13.
Zhongguo Zhong Yao Za Zhi ; 46(17): 4314-4322, 2021 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-34581034

RESUMO

Bolbostemma paniculatum is a commonly used Chinese medicinal material effective in clearing heat, removing toxin, eliminating phlegm, and alleviating swelling. The anti-tumor activity it possesses makes it a research hotspot. At present, 76 compounds have been isolated from B. paniculatum, including triterpenoids, sterols, alkaloids, anthraquinones, organic acids, etc., with anti-tumor, antiviral, and immunosuppressive pharmacological activities. This study reviewed the research on the chemical constituents and pharmacological effects of B. paniculatum over the past 20 years, aiming to provide a scientific basis for the research on the pharmacodynamic material basis and promote the development and utilization of B. paniculatum.


Assuntos
Cucurbitaceae , Medicamentos de Ervas Chinesas , Triterpenos , Medicamentos de Ervas Chinesas/farmacologia , Edema
14.
Trees (Berl West) ; 34(1): 267-283, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32435087

RESUMO

KEY MESSAGE: Transcriptomic analysis of the relationship between gene expression patterns and flavonoid contents in the flower buds of Lonicera japonica under light-induced conditions, especially the flavonoid pathway genes and transcription factors. ABSTRACT: Flos Lonicerae Japonicae (FLJ), the flower buds of Lonicera japonica Thunb., has been used to treat some human diseases including severe respiratory syndromes and hand-foot-and-mouth diseases owing to its putative antibacterial, and antiviral effects. Luteoloside is a flavonoid that is used by the Chinese Pharmacopoeia to evaluate the quality of FLJ. Light is an important environmental factor that affects flavonoid biosynthesis in the flower buds of L. japonica. However, how light triggers increases in flavonoid production remains unclear. To enhance our understanding of the mechanism involved in light-regulated flavonoid biosynthesis, we sequenced the transcriptomes of L. japonica exposed to three different light conditions: 100% light intensity (CK), 50% light intensity (LI50), and 25% light intensity (LI25) using an Illumina HiSeq 4000 System. A total of 77,297 unigenes with an average length of 809 bp were obtained. Among them, 43,334 unigenes (56.06%) could be matched to at least one biomolecular database. Additionally, 4188, 1545 and 1023 differentially expressed genes (DEGs) were identified by comparative transcriptomics LI25-vs-CK, LI50-vs-CK, and LI25-vs-LI50, respectively. Of note, genes known to be involved in flavonoid biosynthesis, such as 4-coumarate coenzyme A ligase (4CL), and chalcone synthase (CHS) were up-regulated. In addition, a total of 1649 transcription factors (TFs) were identified and divided into 58 TF families; 98 TFs exhibited highly dynamic changes in response to light intensity. Quantitative real-time PCR (qRT-PCR) was used to test the expression profiles of the RNA sequencing (RNA-Seq) data. This study offers insight into how transcriptional expression pattern is influenced by light in the flower buds of L. japonica, and will enhance the understanding of molecular mechanisms of flavonoid biosynthesis in response to light in L. japonica.

15.
Sensors (Basel) ; 19(6)2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30871225

RESUMO

In this paper, a multi-module electrodynamic exciter based on moving-magnet disk voice coil motor is presented to meet the demands of high torque and high bandwidth in a dynamic torsional stiffness test. A variable pole-arc ratio disk Halbach array (VPAR-DHA) is proposed, so that both high torque density and low rotor inertia can be obtained through enhancing the magnetic field in the working range. The analytical quasi-3-D model of VPAR-DHA was set up by using the harmonic function method, with the consideration of end-effects by a correction function. Electromagnetic structure optimization was carried out with the analytical model, and verified by 3-D finite-element (FEM) results. The proposed design was experimentally tested and verified with a prototype that achieved a peak dynamic torque output of 40 Nm at a frequency of 120 Hz, and a stroke of ±1°. The proposed method can also be easily extended to satisfy various demands of dynamic torsional stiffness test.

16.
Int J Mol Sci ; 20(18)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514380

RESUMO

Lonicera japonica Thunb. is a widely used medicinal plant and is rich in a variety of active ingredients. Flavonoids are one of the important components in L. japonica and their content is an important indicator for evaluating the quality of this herb. To study the regulation of flavonoid biosynthesis in L. japonica, an R2R3-MYB transcription factor gene LjaMYB12 was isolated and characterized. Bioinformatics analysis indicated that LjaMYB12 belonged to the subgroup 7, with a typical R2R3 DNA-binding domain and conserved subgroup 7 motifs. The transcriptional level of LjaMYB12 was proportional to the total flavonoid content during the development of L. japonica flowers. Subcellular localization analysis revealed that LjaMYB12 localized to the nucleus. Transactivation activity assay indicated that LjaMYB12 was a transcriptional activator. Then, ectopic expression of LjaMYB12 in Arabidopsis could increase PAL activity and flavonoid content and promote transcription of a range of flavonoid biosynthetic genes. Interestingly, the fold changes of downstream genes in the flavonoid biosynthetic pathway were significantly higher than that of the upstream genes, which suggested that LjaMYB12 may have different regulatory patterns for the upstream and downstream pathways of flavonoid biosynthesis. The results provided here will effectively facilitate the study of subgroup 7 MYBs and transcriptional regulation of flavonoid biosynthesis in L. japonica.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Flavonoides/metabolismo , Genes de Plantas , Lonicera/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Núcleo Celular/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas , Fenilalanina Amônia-Liase/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Transcrição Gênica , Ativação Transcricional
17.
Int J Mol Sci ; 19(8)2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30103476

RESUMO

Mentha canadensis L. has important economic value for its abundance in essential oils. Menthol is the main component of M. canadensis essential oils, which is certainly the best-known monoterpene for its simple structure and wide applications. However, the regulation of menthol biosynthesis remains elusive in M. canadensis. In this study, transcriptome sequencing of M. canadensis with MeJA treatment was applied to illustrate the transcriptional regulation of plant secondary metabolites, especially menthol biosynthesis. Six sequencing libraries were constructed including three replicates for both control check (CK) and methyl jasmonate (MeJA) treatment and at least 8 Gb clean bases was produced for each library. After assembly, a total of 81,843 unigenes were obtained with an average length of 724 bp. Functional annotation indicated that 64.55% of unigenes could be annotated in at least one database. Additionally, 4430 differentially expressed genes (DEGs) with 2383 up-regulated and 2047 down-regulated transcripts were identified under MeJA treatment. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment indicated that "Monoterpenoid biosynthesis" was one of the most significantly enriched pathways in metabolism. Subsequently, DEGs involved in JA signal transduction, transcription factors, and monoterpene biosynthesis were analyzed. 9 orthologous genes involved in menthol biosynthesis were also identified. This is the first report of a transcriptome study of M. canadensis and will facilitate the studies of monoterpene biosynthesis in the genus Mentha.


Assuntos
Acetatos/farmacologia , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Monoterpenos/metabolismo , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Proteínas de Plantas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Mentha
18.
Molecules ; 22(1)2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-28067759

RESUMO

An effective synthesis of nucleosides using glycosyl chlorides as glycosyl donors in the absence of Lewis acid has been developed. Glycosyl chlorides have been shown to be pivotal intermediates in the classical silyl-Hilbert-Johnson reaction. A possible mechanism that differs from the currently accepted mechanism advanced by Vorbrueggen has been proposed and verified by experiments. In practice, this catalyst-free method provides easy access to Capecitabine in high yield.


Assuntos
Antimetabólitos Antineoplásicos/síntese química , Capecitabina/síntese química , Cloretos/química , Nucleosídeos/síntese química , Catálise , Glicosilação
19.
Molecules ; 22(3)2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28257115

RESUMO

Esculetin, synonymous with 6,7-dihydroxycoumarin, is the main active ingredient of the traditional Chinese medicine Cortex Fraxini. The twig skin or trunk bark of Cortex Fraxini are used by herb doctors as a mild, bitter liver and gallbladder meridians' nontoxic drug as well as dietary supplement. Recently, with a variety of novel esculetin derivatives being reported, the molecular mechanism research as well as clinical application of Cortex Fraxini and esculetin are becoming more attractive. This mini-review will consolidate what is known about the biological activities, the mechanism of esculetin and its synthetic derivatives over the past decade in addition to providing a brief synopsis of the properties of esculetin.


Assuntos
Umbeliferonas/síntese química , Umbeliferonas/farmacologia , Animais , Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/síntese química , Antioxidantes/farmacologia , Medicamentos de Ervas Chinesas , Humanos , Hipoglicemiantes/síntese química , Hipoglicemiantes/farmacologia , Medicina Tradicional Chinesa , Estrutura Molecular
20.
Chem Commun (Camb) ; 60(42): 5558-5561, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38712611

RESUMO

A novel Catellani-type conversion is reported using aryl-thianthreniums (aryl-TTs) instead of aryl halides. Three classes of ortho-dual C-H functionalization involving alkylation, amination, and deuterated methylation and five types of ipso-operation including alkenylation, cyanation, methylation, hydrogenation, and alkynylation all proceed well in this procedure. In this conversion, aryl-TTs exhibit satisfactory reactivity and feature the advantage that the leaving TT unit can be recovered. More strikingly, this finding represents a new chemistry conversion of aryl-TTs, wherein contiguous tri-functionalization in a single chemical manipulation is realized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA