Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
New Phytol ; 241(5): 2143-2157, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38173177

RESUMO

The chilling stress induced by the global climate change harms rice production, especially at seedling and booting stage, which feed half the population of the world. Although there are key quantitative trait locus genes identified in the individual stage, few genes have been reported and functioned at both stages. Utilizing chromosome segment substitution lines (CSSLs) and a combination of map-based cloning and phenotypes of the mutants and overexpression lines, we identified the major gene Chilling-tolerance in Geng/japonica rice 3 (COG3) of q chilling-tolerance at the booting and seedling stage 11 (qCTBS11) conferred chilling tolerance at both seedling and booting stages. COG3 was significantly upregulated in Nipponbare under chilling treatment compared with its expression in 93-11. The loss-of-function mutants cog3 showed a reduced chilling tolerance. On the contrary, overexpression enhanced chilling tolerance. Genome evolution and genetic analysis suggested that COG3 may have undergone strong selection in temperate japonica during domestication. COG3, a putative calmodulin-binding protein, physically interacted with OsFtsH2 at chloroplast. In cog3-1, OsFtsH2-mediated D1 degradation was impaired under chilling treatment compared with wild-type. Our results suggest that COG3 is necessary for maintaining OsFtsH2 protease activity to regulate chilling tolerance at the booting and seedling stage.


Assuntos
Oryza , Oryza/genética , Locos de Características Quantitativas , Fenótipo , Genes de Plantas , Plântula/genética , Temperatura Baixa
2.
Theor Appl Genet ; 136(1): 19, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36680595

RESUMO

KEY MESSAGE: Chilling-tolerant QTL gene COG2 encoded an extensin and repressed chilling tolerance by affecting the compositions of cell wall. Rice as a major crop is susceptible to chilling stress. Chilling tolerance is a complex trait controlled by multiple quantitative trait loci (QTLs). Here, we identify a QTL gene, COG2, that negatively regulates cold tolerance at seedling stage in rice. COG2 overexpression transgenic plants are sensitive to cold, whereas knockout transgenic lines enhance chilling tolerance. Natural variation analysis shows that Hap1 is a specific haplotype in japonica/Geng rice and correlates with chilling tolerance. The SNP1 in COG2 promoter is a specific divergency and leads to the difference in the expression level of COG2 between japonica/Geng and indica/Xian cultivars. COG2 encodes a cell wall-localized extensin and affects the compositions of cell wall, including pectin and cellulose, to defense the chilling stress. The results extend the understanding of the adaptation to the environment and provide an editing target for molecular design breeding of cold tolerance in rice.


Assuntos
Oryza , Oryza/metabolismo , Locos de Características Quantitativas , Genes de Plantas , Haplótipos , Parede Celular , Temperatura Baixa
3.
Plant Biotechnol J ; 20(6): 1122-1139, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35189026

RESUMO

Melatonin, a natural phytohormone in plants, plays multiple critical roles in plant growth and stress responses. Although melatonin biosynthesis-related genes have been suggested to possess diverse biological functions, their roles and functional mechanisms in regulating rice grain yield remain largely unexplored. Here, we uncovered the roles of a caffeic acid O-methyltransferase (OsCOMT) gene in mediating rice grain yield through dual regulation of leaf senescence and vascular development. In vitro and in vivo evidence revealed that OsCOMT is involved in melatonin biosynthesis. Transgenic assays suggested that OsCOMT significantly delays leaf senescence at the grain filling stage by inhibiting degradation of chlorophyll and chloroplast, which, in turn, improves photosynthesis efficiency. In addition, the number and size of vascular bundles in the culms and leaves were significantly increased in the OsCOMT-overexpressing plants, while decreased in the knockout plants, suggesting that OsCOMT plays a positive role in vascular development of rice. Further evidence indicated that OsCOMT-mediated vascular development might owe to the crosstalk between melatonin and cytokinin. More importantly, we found that OsCOMT is a positive regulator of grain yield, and overexpression of OsCOMT increase grain yield per plant even in a high-yield variety background, suggesting that OsCOMT can be used as an important target for enhancing rice yield. Our findings shed novel insights into melatonin-mediated leaf senescence and vascular development and provide a possible strategy for genetic improvement of rice grain yield.


Assuntos
Melatonina , Oryza , Grão Comestível , Regulação da Expressão Gênica de Plantas/genética , Melatonina/genética , Melatonina/metabolismo , Metiltransferases , Oryza/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Senescência Vegetal
4.
Plant Biotechnol J ; 20(2): 335-349, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34582620

RESUMO

Necrotrophic fungus Rhizoctonia solani Kühn (R. solani) causes serious diseases in many crops worldwide, including rice and maize sheath blight (ShB). Crop resistance to the fungus is a quantitative trait and resistance mechanism remains largely unknown, severely hindering the progress on developing resistant varieties. In this study, we found that resistant variety YSBR1 has apparently stronger ability to suppress the expansion of R. solani than susceptible Lemont in both field and growth chamber conditions. Comparison of transcriptomic profiles shows that the photosynthetic system including chlorophyll biosynthesis is highly suppressed by R. solani in Lemont but weakly in YSBR1. YSBR1 shows higher chlorophyll content than that of Lemont, and inducing chlorophyll degradation by dark treatment significantly reduces its resistance. Furthermore, three rice mutants and one maize mutant that carry impaired chlorophyll biosynthesis all display enhanced susceptibility to R. solani. Overexpression of OsNYC3, a chlorophyll degradation gene apparently induced expression by R. solani infection, significantly enhanced ShB susceptibility in a high-yield ShB-susceptible variety '9522'. However, silencing its transcription apparently improves ShB resistance without compromising agronomic traits or yield in field tests. Interestingly, altering chlorophyll content does not affect rice resistance to blight and blast diseases, caused by biotrophic and hemi-biotrophic pathogens, respectively. Our study reveals that chlorophyll plays an important role in ShB resistance and suppressing chlorophyll degradation induced by R. solani infection apparently improves rice ShB resistance. This discovery provides a novel target for developing resistant crop to necrotrophic fungus R. solani.


Assuntos
Oryza , Clorofila , Oryza/genética , Oryza/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Rhizoctonia
5.
Theor Appl Genet ; 135(8): 2687-2698, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35701585

RESUMO

KEY MESSAGE: We mapped Rf18(t), a Restorer-of-fertility gene for wild abortive cytoplasmic male sterility from the japonica maintainer 'Nipponbare', to chromosome 1. The best candidate gene, LOC_Os01g71320, is predicted to encode hexokinase. Three-line hybrid rice obtained through cytoplasmic male sterility (CMS) has helped increase the yield of rice globally, and the wild abortive (WA)-type cytoplasm from wild rice (Oryza rufipogon Griff.) is used widely in three-line indica hybrids. The identification and mapping of the Restorer-of-fertility (Rf) genes in maintainer lines aided in uncovering the genetic basis of fertility restoration of WA-type CMS and the development of WA-type hybrids. In this study, we identified a new Rf gene, Rf18(t), for WA-type CMS from the japonica maintainer line 'Nipponbare' using a chromosome segment substitution line population derived from a cross between the indica line 9311 and 'Nipponbare.' Using a substitution mapping strategy, Rf18(t) was delimited to a 48-kb chromosomal region flanked by molecular marker loci ID01M28791 and ID01M28845 on chromosome 1. By comparative sequence analyses, we propose that LOC_Os01g71320 is the most likely candidate gene for Rf18(t), and it is predicted to encode hexokinase. Furthermore, Rf18(t) was found to function in fertility restoration probably by a posttranscriptional mechanism and its function is dependent on the genetic background of 9311. These results broaden our knowledge on the mechanism of fertility restoration of WA-type CMS lines and will facilitate the development of WA-type rice hybrids.


Assuntos
Oryza , Citoplasma/genética , Fertilidade/genética , Genes de Plantas , Hexoquinase/genética , Oryza/genética , Infertilidade das Plantas/genética
6.
Aging Clin Exp Res ; 34(6): 1237-1246, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35102514

RESUMO

OBJECTIVES: To conduct a comprehensive systematic review and meta-analysis to explore the correlation between migraine and the risk of dementia. METHODS: The PubMed, EMBASE, and Cochrane library databases were searched systematically. We selected cohort studies (prospective and retrospective) and case-control studies that reported migraine in patients with dementia, including vascular dementia. The pooled effects were analyzed to evaluate relative risk with 95% confidence intervals. RESULTS: In total, nine studies (two case-control and seven cohort studies) including 291,549 individuals were identified. These studies indicated that people with migraine (relative risk = 1.33; 95% confidence interval: 1.16-1.53) have an increased risk of all-cause dementia. Additionally, the pooled results of four studies showed that migraine is associated with an increased risk of vascular dementia (relative risk = 1.85; 95% confidence interval: 1.22-2.81; P = 0.004). CONCLUSIONS: Data from observational studies suggest that migraine may be a risk factor for dementia, particularly vascular dementia. More studies are warranted to explore the association between migraine and dementia and the potential common pathophysiological mechanisms.


Assuntos
Demência Vascular , Transtornos de Enxaqueca , Demência Vascular/complicações , Demência Vascular/etiologia , Humanos , Transtornos de Enxaqueca/complicações , Transtornos de Enxaqueca/epidemiologia , Estudos Prospectivos , Estudos Retrospectivos , Fatores de Risco
7.
Int J Mol Sci ; 23(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35955422

RESUMO

Grain weight is a key trait that determines rice quality and yield, and it is primarily controlled by quantitative trait loci (QTL). Recently, attention has been paid to minor QTLs. A minor effect QTL qTGW7 that controls grain weight was previously identified in a set of chromosomal fragment substitution lines (CSSLs) derived from Nipponbare (NPB)/93-11. Compared to NPB, the single segment substitution line (SSSL) N83 carrying the qTGW7 introgression exhibited an increase in grain length and width and a 4.5% increase in grain weight. Meanwhile, N83 was backcrossed to NPB to create a separating population, qTGW7b, a QTL distinct from qTGW7, which was detected between markers G31 and G32. Twelve near-isogenic lines (NILs) from the BC9F3 population and progeny of five NILs from the BC9F3:4 population were genotyped and phenotyped, resulting in the fine mapping of the minor effect QTL qTGW7b to the approximately 86.2-kb region between markers G72 and G32. Further sequence comparisons and expression analysis confirmed that five genes, including Os07g39370, Os07g39430, Os07g39440, Os07g39450, and Os07g39480, were considered as the candidate genes underlying qTGW7b. These results provide a crucial foundation for further cloning of qTGW7b and molecular breeding design in rice.


Assuntos
Oryza , Locos de Características Quantitativas , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Grão Comestível/genética , Oryza/genética
8.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36430147

RESUMO

The mobilization and translocation of carbohydrates and mineral nutrients from vegetative plant parts to grains are pivotal for grain filling, often involving a whole plant senescence process. Loss of greenness is a hallmark of leaf senescence. However, the relationship between crop yield and senescence has been controversial for many years. Here, in this study, the overexpression and RNA interference lines of gene of OsNYC3 (Non-Yellow Coloring 3), a chlorophyll catabolism gene, were investigated. Furthermore, exogenous phytohormones were applied, and a treatment of alternate wetting and moderate drying (AWMD) was introduced to regulate the processes of leaf senescence. The results indicated that the delayed senescence of the "STAY-GREEN" trait of rice is undesirable for the process of grain filling, and it would cause a lower ratio of grain filling and lower grain weight of inferior grains, because of unused assimilates in the stems and leaves. Through the overexpression of OsNYC3, application of exogenous chemicals of abscisic acid (ABA), and water management of AWMD, leaf photosynthesis was less influenced, a high ratio of carbohydrate assimilates was partitioned to grains other than leaves and stems as labeled by 13C, grain filling was improved, especially for inferior spikelets, and activities of starch-synthesizing enzymes were enhanced. However, application of ethephon not only accelerated leaf senescence, but also caused seed abortion and grain weight reduction. Thus, plant senescence needs to be finely adjusted in order to make a contribution to crop productivity.


Assuntos
Oryza , Oryza/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Ácido Abscísico/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo
9.
BMC Cancer ; 21(1): 362, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33827689

RESUMO

BACKGROUND: Hand-foot syndrome (HFS) is a side effect of skin related to pegylated liposomal doxorubicin (PLD) application. Moderate to severe hand-foot syndrome (MSHFS) might have a serious impact on patients' quality of life and treatment. However, information on risk factors for the development of MSHFS is still limited. To analyze the risk factors for PLD-induced MSHFS in breast cancer patients and constructed a logistic regression prediction model. METHODS: We conducted a retrospective analysis of breast cancer patients who were treated with a PLD regimen in the Tumor Hospital of Harbin Medical University from January 2017 to August 2019. A total of 26 factors were collected from electronic medical records. Patients were divided into MSHFS (HFS > grade 1) and NMHFS (HFS ≤ grade 1) groups according to the NCI classification. Statistical analysis of these factors and the construction of a logistic regression prediction model based on risk factors. RESULTS: A total of 44.7% (206/461) of patients developed MSHFS. The BMI, dose intensity, and baseline Alanine aminotransferase (ALT) and Aspartate aminotransferase (AST) levels in the MSHFS group, as well as good peripheral blood circulation, excessive sweat excretion, history of gallstones, and tumour- and HER2-positive percentages, were all higher than those in the NMHFS group (P < 0.05). The model for predicting the occurrence of MSHFS was P = 1/1 + exp. (11.138-0.110*BMI-0.234*dose intensity-0.018*baseline ALT+ 0.025*baseline AST-1.225*gallstone history-0.681* peripheral blood circulation-1.073*sweat excretion-0.364*with or without tumor-0.680*HER-2). The accuracy of the model was 72.5%, AUC = 0.791, and Hosmer-Lemeshow fit test P = 0.114 > 0.05. CONCLUSIONS: Nearly half of the patients developed MSHFS. The constructed prediction model may be valuable for predicting the occurrence of MSHFS in patients.


Assuntos
Neoplasias da Mama/complicações , Doxorrubicina/análogos & derivados , Síndrome Mão-Pé/etiologia , Doxorrubicina/efeitos adversos , Feminino , Humanos , Pessoa de Meia-Idade , Polietilenoglicóis/efeitos adversos , Estudos Retrospectivos
10.
PLoS Genet ; 14(11): e1007769, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30419020

RESUMO

Meiotic cytokinesis influences the fertility and ploidy of gametes. However, limited information is available on the genetic control of meiotic cytokinesis in plants. Here, we identified a rice mutant with low male fertility, defective callose in meiosis 1 (dcm1). The pollen grains of dcm1 are proved to be defective in exine formation. Meiotic cytokinesis is disrupted in dcm1, resulting in disordered spindle orientation during meiosis II and formation of pollen grains with varied size and DNA content. We demonstrated that meiotic cytokinesis defect in dcm1 is caused by prematurely dissolution of callosic plates. Furthermore, peripheral callose surrounding the dcm1 pollen mother cells (PMCs) also disappeared untimely around pachytene. The DCM1 protein contains five tandem CCCH motifs and interacts with nuclear poly (A) binding proteins (PABNs) in nuclear speckles. The expression profiles of genes related to callose synthesis and degradation are significantly modified in dcm1. Together, we propose that DCM1 plays an essential role in male meiotic cytokinesis by preserving callose from prematurely dissolution in rice.


Assuntos
Glucanos/metabolismo , Oryza/citologia , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Núcleo Celular/metabolismo , Citocinese/genética , Citocinese/fisiologia , Técnicas de Inativação de Genes , Genes de Plantas , Meiose/genética , Meiose/fisiologia , Oryza/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Pólen/citologia , Pólen/genética , Pólen/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , Homologia de Sequência de Aminoácidos , Sequências de Repetição em Tandem , Dedos de Zinco/genética
11.
New Phytol ; 227(5): 1417-1433, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32433775

RESUMO

Plants maintain a dynamic balance between plant growth and stress tolerance to optimise their fitness and ensure survival. Here, we investigated the roles of a clade A type 2C protein phosphatase (PP2C)-encoding gene, OsPP2C09, in regulating the trade-off between plant growth and drought tolerance in rice (Oryza sativa L.). The OsPP2C09 protein interacted with the core components of abscisic acid (ABA) signalling and showed PP2C phosphatase activity in vitro. OsPP2C09 positively affected plant growth but acted as a negative regulator of drought tolerance through ABA signalling. Transcript and protein levels of OsPP2C09 were rapidly induced by exogenous ABA treatments, which suppressed excessive ABA signalling and plant growth arrest. OsPP2C09 transcript levels in roots were much higher than those in shoots under normal conditions. After ABA, polyethylene glycol and dehydration treatments, the accumulation rate of OsPP2C09 transcripts in roots was more rapid and greater than that in shoots. This differential expression between the roots and shoots may increase the plant's root-to-shoot ratio under drought-stress conditions. This study sheds new light on the roles of OsPP2C09 in coordinating plant growth and drought tolerance. In particular, we propose that OsPP2C09-mediated ABA desensitisation contributes to root elongation under drought-stress conditions in rice.


Assuntos
Oryza , Ácido Abscísico , Secas , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética
12.
Opt Express ; 28(8): 11406-11414, 2020 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-32403652

RESUMO

According to modern cosmology, expansion of the universe is due to the metric changing of spacetime itself. Here, we propose to mimic an expanding universe by utilizing optical interference and helicoid waveguides. The evolution of interference pattern in the helicoid waveguide is investigated theoretically and experimentally. For precise measurements, we design an air helicoid waveguide which allows us to investigate the wave front of laser beams from the waveguide. Redshift of a Gaussian wave packet in the expanding universe is demonstrated with high precision, showing that the helicoid waveguide acts as a parabolic gradient index lens exactly. The proposed waveguide structure can be used as an efficient waveguide adapter.

13.
Plant Biotechnol J ; 17(3): 650-664, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30160362

RESUMO

Heterotrimeric G proteins, which consist of Gα , Gß and Gγ subunits, function as molecular switches that regulate a wide range of developmental processes in plants. In this study, we characterised the function of rice RGG2, which encodes a type B Gγ subunit, in regulating grain size and yield production. The expression levels of RGG2 were significantly higher than those of other rice Gγ -encoding genes in all tissues tested, suggesting that RGG2 plays essential roles in rice growth and development. By regulating cell expansion, overexpression of RGG2 in Nipponbare (NIP) led to reduced plant height and decreased grain size. By contrast, two mutants generated by the clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system in the Zhenshan 97 (ZS97) background, zrgg2-1 and zrgg2-2, exhibited enhanced growth, including elongated internodes, increased 1000-grain weight and plant biomass and enhanced grain yield per plant (+11.8% and 16.0%, respectively). These results demonstrate that RGG2 acts as a negative regulator of plant growth and organ size in rice. By measuring the length of the second leaf sheath after gibberellin (GA3 ) treatment and the GA-induced α-amylase activity of seeds, we found that RGG2 is also involved in GA signalling. In summary, we propose that RGG2 may regulate grain and organ size via the GA pathway and that manipulation of RGG2 may provide a novel strategy for rice grain yield enhancement.


Assuntos
Grão Comestível/crescimento & desenvolvimento , Subunidades gama da Proteína de Ligação ao GTP/genética , Oryza/genética , Proteínas de Plantas/genética , Sistemas CRISPR-Cas , Grão Comestível/genética , Subunidades gama da Proteína de Ligação ao GTP/fisiologia , Edição de Genes/métodos , Regulação da Expressão Gênica de Plantas , Mutação/genética , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento
14.
Plant Physiol ; 178(4): 1522-1536, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30190417

RESUMO

Polyamines, including putrescine, spermidine, and spermine, play essential roles in a wide variety of prokaryotic and eukaryotic organisms. Rice (Oryza sativa) contains four putative spermidine/spermine synthase (SPMS)-encoding genes (OsSPMS1, OsSPMS2, OsSPMS3, and OsACAULIS5), but none have been functionally characterized. In this study, we used a reverse genetic strategy to investigate the biological function of OsSPMS1 We generated several homozygous RNA interference (RNAi) and overexpression (OE) lines of OsSPMS1 Phenotypic analysis indicated that OsSPMS1 negatively regulates seed germination, grain size, and grain yield per plant. The ratio of spermine to spermidine was significantly lower in the RNAi lines and considerably higher in the OE lines than in the wild type, suggesting that OsSPMS1 may function as a SPMS. S-Adenosyl-l-methionine is a common precursor of polyamines and ethylene biosynthesis. The 1-aminocyclopropane-1-carboxylic acid (ACC) and ethylene contents in seeds increased significantly in RNAi lines and decreased in OE lines, respectively, compared with the wild type. Additionally, the reduced germination rates and growth defects of OE lines could be rescued with ACC treatment. These data suggest that OsSPMS1 affects ethylene synthesis and may regulate seed germination and plant growth by affecting the ACC and ethylene pathways. Most importantly, an OsSPMS1 knockout mutant showed an increase in grain yield per plant in a high-yield variety, Suken118, suggesting that OsSPMS1 is an important target for yield enhancement in rice.


Assuntos
Germinação/fisiologia , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Espermina Sintase/metabolismo , Aminoácidos Cíclicos/metabolismo , Etilenos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Homeostase , Oryza/enzimologia , Oryza/genética , Filogenia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Sementes/genética , Sementes/metabolismo , Espermina Sintase/genética
15.
Int J Mol Sci ; 20(19)2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31569360

RESUMO

The market success of any rice cultivar is exceedingly dependent on its grain appearance, as well as its grain yield, which define its demand by consumers as well as growers. The present study was undertaken to explore the contribution of nine major genes, qPE9~1, GW2, SLG7, GW5, GS3, GS7, GW8, GS5, and GS2, in regulating four size and weight related traits, i.e., grain length (GL), grain width (GW), grain thickness (GT), and thousand grain weight (TGW) in 204 diverse rice germplasms using Insertion/Deletion (InDel) markers. The studied germplasm displayed wide-ranging variability in the four studied traits. Except for three genes, all six genes showed considerable association with these traits with varying strengths. Whole germplasm of 204 genotypes could be categorized into three major clusters with different grain sizes and weights that could be utilized in rice breeding programs where grain appearance and weight are under consideration. The study revealed that TGW was 24.9% influenced by GL, 37.4% influenced by GW, and 49.1% influenced by GT. Hence, assuming the trend of trait selection, i.e., GT > GW > GL, for improving TGW in the rice yield enhancement programs. The InDel markers successfully identified a total of 38 alleles, out of which 27 alleles were major and were found in more than 20 genotypes. GL was associated with four genes (GS3, GS7, GW8, and GS2). GT was also found to be regulated by four different genes (GS3, GS7, GW8, and GS2) out of the nine studied genes. GW was found to be under the control of three studied genes (GW5, GW8, and GS2), whereas TGW was found to be under the influence of four genes (SLG7, GW5, GW8, and GS5) in the germplasm under study. The Unweighted Pair Group Method with Arithmetic means (UPGMA) tree based on the studied InDel marker loci segregated the whole germplasm into three distinct clusters with dissimilar grain sizes and weights. A two-dimensional scatter plot constructed using Principal Coordinate Analysis (PCoA) based on InDel markers further separated the 204 rice germplasms into four sub-populations with prominent demarcations of extra-long, long, medium, and short grain type germplasms that can be utilized in breeding programs accordingly. The present study could help rice breeders to select a suitable InDel marker and in formulation of breeding strategies for improving grain appearance, as well as weight, to develop rice varieties to compete international market demands with higher yield returns. This study also confirms the efficient application of InDel markers in studying diverse types of rice germplasm, allelic frequencies, multiple-gene allele contributions, marker-trait associations, and genetic variations that can be explored further.


Assuntos
Alelos , Genes de Plantas , Variação Genética , Mutação INDEL , Família Multigênica , Oryza/genética , Fenótipo , Estudos de Associação Genética , Locos de Características Quantitativas
17.
Theor Appl Genet ; 131(3): 637-648, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29299612

RESUMO

KEY MESSAGE: A novel QTL for grain number, GN4-1, was identified and fine-mapped to an ~ 190-kb region on the long arm of rice chromosome 4. Rice grain yield is primarily determined by three components: number of panicles per plant, grain number per panicle and grain weight. Among these traits, grain number per panicle is the major contributor to grain yield formation and is a crucial trait for yield improvement. In this study, we identified a major quantitative trait locus (QTL) responsible for rice grain number on chromosome 4, designated GN4-1 (a QTL for Grain Number on chromosome 4), using advanced segregating populations derived from the crosses between an elite indica cultivar 'Zhonghui 8006' (ZH8006) and a japonica rice 'Wuyunjing 8' (WYJ8). GN4-1 was delimited to an ~ 190-kb region on chromosome 4. The genetic effect of GN4-1 was estimated using a pair of near-isogenic lines. The GN4-1 gene from WYJ8 promoted accumulation of cytokinins in the inflorescence and increased grain number per panicle by ~ 17%. More importantly, introduction of the WYJ8 GN4-1 gene into ZH8006 increased grain yield by ~ 14.3 and ~ 11.5% in the experimental plots in 2014 and 2015, respectively. In addition, GN4-1 promoted thickening of the culm and may enhance resistance to lodging. These results demonstrate that GN4-1 is a potentially valuable gene for improvement of yield and lodging resistance in rice breeding.


Assuntos
Oryza/genética , Locos de Características Quantitativas , Sementes/crescimento & desenvolvimento , Mapeamento Cromossômico , Citocininas/metabolismo , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Genes de Plantas , Oryza/crescimento & desenvolvimento , Fenótipo , Sementes/genética
19.
New Phytol ; 206(2): 807-16, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25420550

RESUMO

A major event in land plant evolution is the origin of vascular tissues, which ensure the long-distance transport of water, nutrients and organic compounds. However, the molecular basis for the origin and evolution of plant vascular tissues remains largely unknown. Here, we investigate the evolution of the land plant TAL-type transaldolase (TAL) gene and its potential function in rice (Oryza sativa) based on phylogenetic analyses and transgenic experiments, respectively. TAL genes are only present in land plants and bacteria. Phylogenetic analyses suggest that land plant TAL genes are derived from Actinobacteria through an ancient horizontal gene transfer (HGT) event. Further evidence reveals that land plant TAL genes have undergone positive selection and gained several introns following its acquisition by the most recent common ancestor of land plants. Transgenic plant experiments show that rice TAL is specifically expressed in vascular tissues and that knockdown of TAL expression leads to changes in both the number and pattern of vascular bundles. Our findings show that the ancient HGT of TAL from bacteria probably plays an important role in plant vascular development and adaptation to land environments.


Assuntos
Bactérias/genética , Embriófitas/genética , Oryza/genética , Transaldolase/genética , Evolução Biológica , Embriófitas/crescimento & desenvolvimento , Transferência Genética Horizontal , Íntrons/genética , Oryza/crescimento & desenvolvimento , Filogenia , Proteínas de Plantas/genética , Feixe Vascular de Plantas/genética , Feixe Vascular de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas
20.
J Exp Bot ; 66(20): 6371-84, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26175353

RESUMO

Heterotrimeric GTP-binding protein (G-protein)-mediated abscisic acid (ABA) and drought-stress responses have been documented in numerous plant species. However, our understanding of the function of rice G-protein subunits in ABA signalling and drought tolerance is limited. In this study, the function of G-protein subunits in ABA response and drought resistance in rice plants was explored. It was found that the transcription level of qPE9-1 (rice Gγ subunit) gradually decreased with increasing ABA concentration and the lack of qPE9-1 showed an enhanced drought tolerance in rice plants. In contrast, mRNA levels of RGB1 (rice Gß subunit) were significantly upregulated by ABA treatment and the lack of RGB1 led to reduced drought tolerance. Furthermore, the results suggested that qPE9-1 negatively regulates the ABA response by suppressing the expression of key transcription factors involved in ABA and stress responses, while RGB1 positively regulates ABA biosynthesis by upregulating NCED gene expression under both normal and drought stress conditions. Taken together, it is proposed that RGB1 is a positive regulator of the ABA response and drought adaption in rice plants, whereas qPE9-1 is modulated by RGB1 and functions as a negative regulator in the ABA-dependent drought-stress responses.


Assuntos
Ácido Abscísico/metabolismo , Aclimatação , Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica de Plantas , Oryza/genética , Proteínas de Plantas/genética , Secas , Proteínas de Ligação ao GTP/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA