Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Cell ; 175(3): 766-779.e17, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30340042

RESUMO

The super elongation complex (SEC) is required for robust and productive transcription through release of RNA polymerase II (Pol II) with its P-TEFb module and promoting transcriptional processivity with its ELL2 subunit. Malfunction of SEC contributes to multiple human diseases including cancer. Here, we identify peptidomimetic lead compounds, KL-1 and its structural homolog KL-2, which disrupt the interaction between the SEC scaffolding protein AFF4 and P-TEFb, resulting in impaired release of Pol II from promoter-proximal pause sites and a reduced average rate of processive transcription elongation. SEC is required for induction of heat-shock genes and treating cells with KL-1 and KL-2 attenuates the heat-shock response from Drosophila to human. SEC inhibition downregulates MYC and MYC-dependent transcriptional programs in mammalian cells and delays tumor progression in a mouse xenograft model of MYC-driven cancer, indicating that small-molecule disruptors of SEC could be used for targeted therapy of MYC-induced cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Experimentais/tratamento farmacológico , Fator B de Elongação Transcricional Positiva/metabolismo , Proteínas Repressoras/metabolismo , Elongação da Transcrição Genética/efeitos dos fármacos , Fatores de Elongação da Transcrição/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Drosophila , Feminino , Células HCT116 , Células HEK293 , Resposta ao Choque Térmico , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Polimerase II/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
2.
Cell ; 168(1-2): 59-72.e13, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28065413

RESUMO

Chromosomal translocations of the mixed-lineage leukemia (MLL) gene with various partner genes result in aggressive leukemia with dismal outcomes. Despite similar expression at the mRNA level from the wild-type and chimeric MLL alleles, the chimeric protein is more stable. We report that UBE2O functions in regulating the stability of wild-type MLL in response to interleukin-1 signaling. Targeting wild-type MLL degradation impedes MLL leukemia cell proliferation, and it downregulates a specific group of target genes of the MLL chimeras and their oncogenic cofactor, the super elongation complex. Pharmacologically inhibiting this pathway substantially delays progression, and it improves survival of murine leukemia through stabilizing wild-type MLL protein, which displaces the MLL chimera from some of its target genes and, therefore, relieves the cellular oncogenic addiction to MLL chimeras. Stabilization of MLL provides us with a paradigm in the development of therapies for aggressive MLL leukemia and perhaps for other cancers caused by translocations.


Assuntos
Leucemia Aguda Bifenotípica/tratamento farmacológico , Leucemia Aguda Bifenotípica/metabolismo , Proteólise/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Interleucina-1/metabolismo , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína de Leucina Linfoide-Mieloide/metabolismo , Enzimas de Conjugação de Ubiquitina
3.
Nature ; 621(7979): 610-619, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37557913

RESUMO

The proper regulation of transcription is essential for maintaining genome integrity and executing other downstream cellular functions1,2. Here we identify a stable association between the genome-stability regulator sensor of single-stranded DNA (SOSS)3 and the transcription regulator Integrator-PP2A (INTAC)4-6. Through SSB1-mediated recognition of single-stranded DNA, SOSS-INTAC stimulates promoter-proximal termination of transcription and attenuates R-loops associated with paused RNA polymerase II to prevent R-loop-induced genome instability. SOSS-INTAC-dependent attenuation of R-loops is enhanced by the ability of SSB1 to form liquid-like condensates. Deletion of NABP2 (encoding SSB1) or introduction of cancer-associated mutations into its intrinsically disordered region leads to a pervasive accumulation of R-loops, highlighting a genome surveillance function of SOSS-INTAC that enables timely termination of transcription at promoters to constrain R-loop accumulation and ensure genome stability.


Assuntos
Instabilidade Genômica , Regiões Promotoras Genéticas , Estruturas R-Loop , Terminação da Transcrição Genética , Humanos , DNA de Cadeia Simples/metabolismo , Instabilidade Genômica/genética , Mutação , Estruturas R-Loop/genética , RNA Polimerase II/metabolismo , Regiões Promotoras Genéticas/genética , Genoma Humano , Proteínas de Ligação a DNA/metabolismo
4.
Genes Dev ; 31(20): 2056-2066, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29138278

RESUMO

Mutations and translocations within the COMPASS (complex of proteins associated with Set1) family of histone lysine methyltransferases are associated with a large number of human diseases, including cancer. Here we report that SET1B/COMPASS, which is essential for cell survival, surprisingly has a cytoplasmic variant. SET1B, but not its SET domain, is critical for maintaining cell viability, indicating a novel catalytic-independent role of SET1B/COMPASS. Loss of SET1B or its unique cytoplasmic-interacting protein, BOD1, leads to up-regulation of expression of numerous genes modulating fatty acid metabolism, including ADIPOR1 (adiponectin receptor 1), COX7C, SDC4, and COQ7 Our detailed molecular studies identify ADIPOR1 signaling, which is inactivated in both obesity and human cancers, as a key target of SET1B/COMPASS. Collectively, our study reveals a cytoplasmic function for a member of the COMPASS family, which could be harnessed for therapeutic regulation of signaling in human diseases, including cancer.


Assuntos
Sistema Enzimático do Citocromo P-450/fisiologia , Histona-Lisina N-Metiltransferase/fisiologia , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Citoplasma/enzimologia , Citoplasma/metabolismo , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Células MCF-7 , Camundongos , Camundongos Nus , Domínios PR-SET , Subunidades Proteicas/metabolismo , Receptores de Adiponectina/metabolismo , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/etiologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
5.
J Biol Chem ; 299(9): 105151, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37567479

RESUMO

Hepatitis B virus (HBV) is a hepatotropic DNA virus that has a very compact genome. Due to this genomic density, several distinct mechanisms are used to facilitate the viral life cycle. Recently, accumulating evidence show that G-quadruplex (G4) in different viruses play essential regulatory roles in key steps of the viral life cycle. Although G4 structures in the HBV genome have been reported, their function in HBV replication remains elusive. In this study, we treated an HBV replication-competent cell line and HBV-infected cells with the G4 structure stabilizer pyridostatin (PDS) and evaluated different HBV replication markers to better understand the role played by the G4. In both models, we found PDS had no effect on viral precore RNA (pcRNA) or pre-genomic RNA (pgRNA), but treatment did increase HBeAg/HBc ELISA reads and intracellular levels of viral core/capsid protein (HBc) in a dose-dependent manner, suggesting post-transcriptional regulation. To further dissect the mechanism of G4 involvement, we used in vitro-synthesized HBV pcRNA and pgRNA. Interestingly, we found PDS treatment only enhanced HBc expression from pgRNA but not HBeAg expression from pcRNA. Our bioinformatic analysis and CD spectroscopy revealed that pgRNA harbors a conserved G4 structure. Finally, we introduced point mutations in pgRNA to disrupt its G4 structure and observed the resulting mutant failed to respond to PDS treatment and decreased HBc level in in vitro translation assay. Taken together, our data demonstrate that HBV pgRNA contains a G4 structure that plays a vital role in the regulation of viral mRNA translation.


Assuntos
Quadruplex G , Vírus da Hepatite B , Hepatite B , Humanos , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Hepatite B/virologia , Antígenos E da Hepatite B/metabolismo , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Proteínas do Core Viral/química , Proteínas do Core Viral/metabolismo , Replicação Viral/genética , Linhagem Celular , Quadruplex G/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/genética , Mutação , Aminoquinolinas/farmacologia
6.
Genome Res ; 31(9): 1546-1560, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34400476

RESUMO

G-quadruplexes (G4s) are noncanonical DNA secondary structures formed through the self-association of guanines, and G4s are distributed widely across the genome. G4 participates in multiple biological processes including gene transcription, and G4-targeted ligands serve as potential therapeutic agents for DNA-targeted therapies. However, genome-wide studies of the exact roles of G4s in transcriptional regulation are still lacking. Here, we establish a sensitive G4-CUT&Tag method for genome-wide profiling of native G4s with high resolution and specificity. We find that native G4 signals are cell type-specific and are associated with transcriptional regulatory elements carrying active epigenetic modifications. Drug-induced promoter-proximal RNA polymerase II pausing promotes nearby G4 formation. In contrast, G4 stabilization by G4-targeted ligands globally reduces RNA polymerase II occupancy at gene promoters as well as nascent RNA synthesis. Moreover, ligand-induced G4 stabilization modulates chromatin states and impedes transcription initiation via inhibition of general transcription factors loading to promoters. Together, our study reveals a reciprocal genome-wide regulation between native G4 dynamics and gene transcription, which will deepen our understanding of G4 biology toward therapeutically targeting G4s in human diseases.


Assuntos
Quadruplex G , Iniciação da Transcrição Genética , Cromatina , DNA/química , Ligantes , Regiões Promotoras Genéticas
7.
J Virol ; 97(7): e0051223, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37347173

RESUMO

Nonstructural protein 13 (nsp13), the helicase of SARS-CoV-2, has been shown to possess multiple functions that are essential for viral replication, and is considered an attractive target for the development of novel antivirals. We were initially interested in the interplay between nsp13 and interferon (IFN) signaling, and found that nsp13 inhibited reporter signal in an IFN-ß promoter assay. Surprisingly, the ectopic expression of different components of the RIG-I/MDA5 pathway, which were used to stimulate IFN-ß promoter, was also mitigated by nsp13. However, endogenous expression of these genes was not affected by nsp13. Interestingly, nsp13 restricted the expression of foreign genes originating from plasmid transfection, but failed to inhibit them after chromosome integration. These data, together with results from a runoff transcription assay and RNA sequencing, suggested a specific inhibition of episomal but not chromosomal gene transcription by nsp13. By using different truncated and mutant forms of nsp13, we demonstrated that its NTPase and helicase activities contributed to the inhibition of episomal DNA transcription, and that this restriction required direct interaction with episomal DNA. Based on these findings, we developed an economical and convenient high-throughput drug screening method targeting nsp13. We evaluated the inhibitory effects of various compounds on nsp13 by the expression of reporter gene plasmid after co-transfection with nsp13. In conclusion, we found that nsp13 can specifically inhibit episomal DNA transcription and developed a high-throughput drug screening method targeting nsp13 to facilitate the development of new antiviral drugs. IMPORTANCE To combat COVID-19, we need to understand SARS-CoV-2 and develop effective antiviral drugs. In our study, we serendipitously found that SARS-CoV-2 nsp13 could suppress episomal DNA transcription without affecting chromosomal DNA. Detailed characterization revealed that nsp13 suppresses episomal gene expression through its NTPase and helicase functions following DNA binding. Furthermore, we developed a high-throughput drug screening system targeting SARS-CoV-2 nsp13. Compared to traditional SARS-CoV-2 drug screening methods, our system is more economical and convenient, facilitating the development of more potent and selective nsp13 inhibitors and enabling the discovery of new antiviral therapies.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Nucleosídeo-Trifosfatase/genética , RNA Helicases/metabolismo , Proteínas não Estruturais Virais/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Antivirais/farmacologia , DNA , Plasmídeos/genética
8.
J Virol ; 96(21): e0136222, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36226986

RESUMO

Hepatitis B virus (HBV) infection is a major health burden worldwide, and currently there is no cure. The persistence of HBV covalently closed circular DNA (cccDNA) is the major obstacle for antiviral trement. HBV core protein (HBc) has emerged as a promising antiviral target, as it plays important roles in critical steps of the viral life cycle. However, whether HBc could regulate HBV cccDNA transcription remains under debate. In this study, different approaches were used to address this question. In synthesized HBV cccDNA and HBVcircle transfection assays, lack of HBc showed no effect on transcription of HBV RNA as well as HBV surface antigen (HBsAg) production in a hepatoma cell line and primary human hepatocytes. Reconstitution of HBc did not alter the expression of cccDNA-derived HBV markers. Similar results were obtained from an in vivo mouse model harboring cccDNA. Chromatin immunoprecipitation (ChIP) or ChIP sequencing assays revealed transcription regulation of HBc-deficient cccDNA chromatin similar to that of wild-type cccDNA. Furthermore, treatment with capsid assembly modulators (CAMs) dramatically reduced extracellular HBV DNA but could not alter viral RNA and HBsAg. Our results demonstrate that HBc neither affects histone modifications and transcription factor binding of cccDNA nor directly influences cccDNA transcription. Although CAMs could reduce HBc binding to cccDNA, they do not suppress cccDNA transcriptional activity. Thus, therapeutics targeting capsid or HBc should not be expected to sufficiently reduce cccDNA transcription. IMPORTANCE Hepatitis B virus (HBV) core protein (HBc) has emerged as a promising antiviral target. However, whether HBc can regulate HBV covalently closed circular DNA (cccDNA) transcription remains elusive. This study illustrated that HBc has no effect on epigenetic regulation of cccDNA, and it does not participate in cccDNA transcription. Given that HBc is dispensable for cccDNA transcription, novel cccDNA-targeting therapeutics are needed for an HBV cure.


Assuntos
DNA Circular , Hepatite B , Animais , Humanos , Camundongos , Antivirais , Proteínas do Capsídeo/genética , DNA Circular/genética , DNA Viral/genética , Epigênese Genética , Hepatite B/genética , Antígenos de Superfície da Hepatite B , Vírus da Hepatite B/fisiologia , Proteínas do Core Viral/genética , Proteínas do Core Viral/metabolismo , Replicação Viral/genética , Transcrição Gênica
9.
Mol Cell ; 60(3): 435-45, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26527278

RESUMO

Although it is established that some general transcription factors are inactivated at mitosis, many details of mitotic transcription inhibition (MTI) and its underlying mechanisms are largely unknown. We have identified mitotic transcriptional activation (MTA) as a key regulatory step to control transcription in mitosis for genes with transcriptionally engaged RNA polymerase II (Pol II) to activate and transcribe until the end of the gene to clear Pol II from mitotic chromatin, followed by global impairment of transcription reinitiation through MTI. Global nascent RNA sequencing and RNA fluorescence in situ hybridization demonstrate the existence of transcriptionally engaged Pol II in early mitosis. Both genetic and chemical inhibition of P-TEFb in mitosis lead to delays in the progression of cell division. Together, our study reveals a mechanism for MTA and MTI whereby transcriptionally engaged Pol II can progress into productive elongation and finish transcription to allow proper cellular division.


Assuntos
DNA Polimerase II/metabolismo , Mitose/fisiologia , Fator B de Elongação Transcricional Positiva/metabolismo , Elongação da Transcrição Genética/fisiologia , Ativação Transcricional/fisiologia , Células HEK293 , Células HeLa , Humanos
10.
Proc Natl Acad Sci U S A ; 117(44): 27365-27373, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33077595

RESUMO

Actively transcribed genes in mammals are decorated by H3K79 methylation, which is correlated with transcription levels and is catalyzed by the histone methyltransferase DOT1L. DOT1L is required for mammalian development, and the inhibition of its catalytic activity has been extensively studied for cancer therapy; however, the mechanisms underlying DOT1L's functions in normal development and cancer pathogenesis remain elusive. To dissect the relationship between H3K79 methylation, cellular differentiation, and transcription regulation, we systematically examined the role of DOT1L and its catalytic activity in embryonic stem cells (ESCs). DOT1L is dispensable for ESC self-renewal but is required for establishing the proper expression signature of neural progenitor cells, while catalytic inactivation of DOT1L has a lesser effect. Furthermore, DOT1L loss, rather than its catalytic inactivation, causes defects in glial cell specification. Although DOT1L loss by itself has no major defect in transcription elongation, transcription elongation defects seen with the super elongation complex inhibitor KL-2 are exacerbated in DOT1L knockout cells, but not in catalytically dead DOT1L cells, revealing a role of DOT1L in promoting productive transcription elongation that is independent of H3K79 methylation. Taken together, our study reveals a catalytic-independent role of DOT1L in modulating cell-fate determination and in transcriptional elongation control.


Assuntos
Diferenciação Celular/genética , Histona-Lisina N-Metiltransferase/metabolismo , Elongação da Transcrição Genética/fisiologia , Proliferação de Células/efeitos dos fármacos , Metilação de DNA/fisiologia , Células-Tronco Embrionárias/metabolismo , Epigênese Genética/genética , Epigenômica , Regulação da Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilação , Metiltransferases/metabolismo , Células-Tronco Neurais/metabolismo , Processamento de Proteína Pós-Traducional , Fatores de Elongação da Transcrição/metabolismo
11.
Genes Dev ; 26(23): 2604-20, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23166019

RESUMO

Monomethylation of histone H3 on Lys 4 (H3K4me1) and acetylation of histone H3 on Lys 27 (H3K27ac) are histone modifications that are highly enriched over the body of actively transcribed genes and on enhancers. Although in yeast all H3K4 methylation patterns, including H3K4me1, are implemented by Set1/COMPASS (complex of proteins associated with Set1), there are three classes of COMPASS-like complexes in Drosophila that could carry out H3K4me1 on enhancers: dSet1, Trithorax, and Trithorax-related (Trr). Here, we report that Trr, the Drosophila homolog of the mammalian Mll3/4 COMPASS-like complexes, can function as a major H3K4 monomethyltransferase on enhancers in vivo. Loss of Trr results in a global decrease of H3K4me1 and H3K27ac levels in various tissues. Assays with the cut wing margin enhancer implied a functional role for Trr in enhancer-mediated processes. A genome-wide analysis demonstrated that Trr is required to maintain the H3K4me1 and H3K27ac chromatin signature that resembles the histone modification patterns described for enhancers. Furthermore, studies in the mammalian system suggested a role for the Trr homolog Mll3 in similar processes. Since Trr and mammalian Mll3/4 complexes are distinguished by bearing a unique subunit, the H3K27 demethylase UTX, we propose a model in which the H3K4 monomethyltransferases Trr/Mll3/Mll4 and the H3K27 demethylase UTX cooperate to regulate the transition from inactive/poised to active enhancers.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Elementos Facilitadores Genéticos , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Animais , Linhagem Celular , Proteínas de Drosophila/genética , Estudo de Associação Genômica Ampla , Histona-Lisina N-Metiltransferase/genética , Metilação
12.
Intern Med J ; 48(4): 439-444, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28636094

RESUMO

BACKGROUND: Clonal Philadelphia (Ph)-negative cytogenetic abnormalities (CPCA) have been reported in chronic myeloid leukaemia (CML) patients treated with either interferon or tyrosine kinase inhibitor (TKI). However, the incidences and types of these cytogenetic abnormalities after treatment vary due to the limited populations enroled. METHODS: We analysed the frequency and types of CPCA in a cohort of 607 CML patients in the chronic phase after TKI treatment. We also followed up these CPCA with a median of 31.8 months (range from 11 to 63 months) from diagnosis and investigated their effects on disease progression. RESULTS: We found 18 out of 607 CML patients had cytogenetic abnormality in the Ph-negative cells with an incidence of 3%. In total, six types of chromosomal abnormalities have been identified in these 18 patients with the majority of them aneuploidy abnormalities, especially the trisomy 8. Four of 18 patients (22.2%) were noted to have several abnormalities in the Ph-negative cells. Furthermore, follow-up studies of these CPCA showed that they could be either persistent or transient (15 vs 3 patients), and may not affect disease progression since none of them developed transformed myelodysplasia or transformed acute myeloid leukaemia. CONCLUSION: Three percent of CML patients in the chronic phase were observed to have CPCA during TKI treatment. Our results suggest that the detection of CPCA in CML may not predict disease progression.


Assuntos
Análise Citogenética , Leucemia Mielogênica Crônica BCR-ABL Positiva/diagnóstico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mieloide Crônica Atípica BCR-ABL Negativa/diagnóstico , Leucemia Mieloide Crônica Atípica BCR-ABL Negativa/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Análise Citogenética/métodos , Feminino , Seguimentos , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/epidemiologia , Leucemia Mieloide Crônica Atípica BCR-ABL Negativa/epidemiologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
13.
Cancer Res ; 84(8): 1252-1269, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38285760

RESUMO

The BET family member BRD4 is a bromodomain-containing protein that plays a vital role in driving oncogene expression. Given their pivotal role in regulating oncogenic networks in various cancer types, BET inhibitors (BETi) have been developed, but the clinical application has been impeded by dose-limiting toxicity and resistance. Understanding the mechanisms of BRD4 activity and identifying predictive biomarkers could facilitate the successful clinical use of BETis. Herein, we show that KDM5C and BRD4 cooperate to sustain tumor cell growth. Mechanistically, KDM5C interacted with BRD4 and stimulated BRD4 enhancer recruitment. Moreover, binding of the BRD4 C-terminus to KDM5C stimulated the H3K4 demethylase activity of KDM5C. The abundance of both KDM5C-associated BRD4 and H3K4me1/3 determined the transcriptional activation of many oncogenes. Notably, depletion or pharmacologic degradation of KDM5C dramatically reduced BRD4 chromatin enrichment and significantly increased BETi efficacy across multiple cancer types in both tumor cell lines and patient-derived organoid models. Furthermore, targeting KDM5C in combination with BETi suppressed tumor growth in vivo in a xenograft mouse model. Collectively, this work reveals a KDM5C-mediated mechanism by which BRD4 regulates transcription, providing a rationale for incorporating BETi into combination therapies with KDM5C inhibitors to enhance treatment efficacy. SIGNIFICANCE: BRD4 is recruited to enhancers in a bromodomain-independent manner by binding KDM5C and stimulates KDM5C H3K4 demethylase activity, leading to synergistic effects of BET and KDM5C inhibitor combinations in cancer.


Assuntos
Antineoplásicos , Fatores de Transcrição , Humanos , Animais , Camundongos , Fatores de Transcrição/metabolismo , Proteínas Nucleares/metabolismo , Cromatina , Proteínas de Ciclo Celular , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proteínas que Contêm Bromodomínio , Histona Desmetilases
14.
J Huazhong Univ Sci Technolog Med Sci ; 33(1): 81-85, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23392712

RESUMO

An emerging infectious disease was identified as severe fever with thrombocytopenia syndrome (SFTS) in central China since late March 2009. We found the patients with SFTS had severe clinical symptoms, and progressed rapidly to multiple organ dysfunction syndrome (MODS) with high fatality rate of 25%-30%. The aim of this study was to assess the significance of risk factors predicting the development of MODS and death in SFTS patients. Consecutive SFTS admissions between May 2009 and September 2011 were analyzed for parameters of organ function during hospitalization using Marshall scoring system for MODS, and platelet counts were recorded on admission and at 24, 48, 72 h and one week after admission. We investigated the kinetics of organ failures and analyzed the association between age, platelet count and development of MODS or death. A total of 92 SFTS patients were enrolled in this study. Among them, 32 patients with dysfunction of over 4 organs were identified, 45% of them died within 72 h, 72% died within 5 days, and 76% died within 7 days after admission. We also found cumulative Marshall score was significantly higher in death patients (11.76±2.05) than in survival patients (4.22±1.98) (P<0.001). In addition, SFTS patients had older age and lower platelet counts in MODS and death groups. Furthermore, we also observed that there was a close correlation between platelet count on admission and Marshall score (P<0.001). High Marshall score, advanced age and lower platelet counts were the main risk factors for the development of MODS, and those factors could predict mortality in SFTS patients, suggesting prompt treatment and close monitoring of severe complications, especially MODS, are of great importance in saving patients' lives.


Assuntos
Mortalidade Hospitalar , Tempo de Internação/estatística & dados numéricos , Insuficiência de Múltiplos Órgãos/mortalidade , Febre por Flebótomos/mortalidade , Trombocitopenia/mortalidade , Adolescente , Adulto , Idoso , China , Comorbidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Medição de Risco , Estatística como Assunto , Taxa de Sobrevida , Síndrome , Adulto Jovem
15.
Oncogene ; 42(16): 1321-1330, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36882522

RESUMO

Cyclin-dependent kinase 13 (CDK13) has been suggested to phosphorylate RNA polymerase II and is involved in transcriptional activation. However, whether CDK13 catalyzes other protein substrates and how CDK13 contributes to tumorigenesis remain largely unclear. We here identify key translation machinery components, 4E-BP1 and eIF4B, as novel CDK13 substrates. CDK13 directly phosphorylates 4E-BP1 at Thr46 and eIF4B at Ser422; genetically or pharmacologically inhibiting CDK13 disrupts mRNA translation. Polysome profiling analysis shows that MYC oncoprotein synthesis strictly depends on CDK13-regulated translation in colorectal cancer (CRC), and CDK13 is required for CRC cell proliferation. As mTORC1 is implicated in 4E-BP1 and eIF4B phosphorylation, inactivation of CDK13 in combination with the mTORC1 inhibitor rapamycin further dephosphorylates 4E-BP1 and eIF4B and blocks protein synthesis. As a result, dual inhibition of CDK13 and mTORC1 induces more profound tumor cell death. These findings clarify the pro-tumorigenic role of CDK13 by direct phosphorylation of translation initiation factors and enhancing protein synthesis. Therefore, therapeutic targeting of CDK13 alone or in combination with rapamycin may pave a new way for cancer treatment.


Assuntos
Proteínas de Ciclo Celular , Fosfoproteínas , Humanos , Fosfoproteínas/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Carcinogênese , Fosforilação , Sirolimo/farmacologia , Biossíntese de Proteínas , Proteína Quinase CDC2/metabolismo
16.
Sci Adv ; 9(13): eadf0005, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36989355

RESUMO

MYCN amplification in neuroblastoma leads to aberrant expression of MYCN oncoprotein, which binds active genes promoting transcriptional amplification. Yet, how MYCN coordinates transcription elongation to meet productive transcriptional amplification and which elongation machinery represents MYCN-driven vulnerability remain to be identified. We conducted a targeted screen of transcription elongation factors and identified the super elongation complex (SEC) as a unique vulnerability in MYCN-amplified neuroblastomas. MYCN directly binds EAF1 and recruits SEC to enhance processive transcription elongation. Depletion of EAF1 or AFF1/AFF4, another core subunit of SEC, leads to a global reduction in transcription elongation and elicits selective apoptosis of MYCN-amplified neuroblastoma cells. A combination screen reveals SEC inhibition synergistically potentiates the therapeutic efficacies of FDA-approved BCL-2 antagonist ABT-199, in part due to suppression of MCL1 expression, both in MYCN-amplified neuroblastoma cells and in patient-derived xenografts. These findings identify disruption of the MYCN-SEC regulatory axis as a promising therapeutic strategy in neuroblastoma.


Assuntos
Neuroblastoma , Proteínas Nucleares , Humanos , Proteína Proto-Oncogênica N-Myc/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo , Fatores de Transcrição
17.
J Med Chem ; 66(16): 11094-11117, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37584263

RESUMO

Endocrine resistance remains a significant problem in the clinical treatment of estrogen receptor α-positive (ERα+) breast cancer (BC). In this study, we developed a series of novel dual-functional ERα degraders based on a bridged bicyclic scaffold with selenocyano (SeCN) side chains. These compounds displayed potent ERα degradation and tubulin depolymerization activity. Among them, compounds 35s and 35t exhibited the most promising antiproliferative and ERα degradation activity in multiple ERα+ BC cell lines bearing either wild-type or mutant ERα. Meanwhile, compounds 35s and 35t disrupted the microtubule network by restraining tubulin polymerization, evidenced by 35t inducing cell cycle arrest in the G2/M phase. In MCF-7 and LCC2 xenograft models, compounds 35s and 35t remarkably suppressed tumor growth without noticeable poisonousness. Finally, this study provided guidance for developing new dual-target antitumor drug candidates for the ERα+ BC therapy, especially for the resistant variant.


Assuntos
Antineoplásicos , Neoplasias da Mama , Receptores de Estrogênio , Feminino , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Receptor alfa de Estrogênio/metabolismo , Células MCF-7 , Receptores de Estrogênio/antagonistas & inibidores , Tubulina (Proteína)/química , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacologia
18.
J Med Chem ; 66(10): 6631-6651, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37161783

RESUMO

The estrogen receptor (ER) is a well-established target for endocrine therapies of ER-positive breast cancer (ER+ BC), but endocrine resistance limits the efficacy of clinical drugs. Using proteolysis targeting chimera (PROTAC) technology to degrade ERα may be an effective alternative to endocrine therapies. Herein, we disclose a novel series of potent and selective ERα PROTACs based on an oxabicycloheptane sulfonamide (OBHSA) scaffold, with no associated ERß degradation. These PROTACs showed significant antiproliferation and ERα degradation activities against a broad spectrum of ER+ BC cells including tamoxifen-resistant and ERα mutant cell lines. Genomics analysis confirmed that these PROTACs inhibited the nascent RNA synthesis of ERα target genes and impaired genome-wide ERα binding. Compound ZD12 exhibited excellent antitumor potency and ERα degradation activity in both tamoxifen-sensitive and -resistant BC mice models, which are superior to fulvestrant. This study demonstrates the potential of these PROTACs as novel drug candidates for endocrine-resistant BC treatment.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Humanos , Animais , Camundongos , Feminino , Receptor alfa de Estrogênio/metabolismo , Quimera de Direcionamento de Proteólise , Células MCF-7 , Antagonistas de Estrogênios/farmacologia , Antagonistas de Estrogênios/uso terapêutico , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Receptores de Estrogênio/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos , Proliferação de Células
19.
Sci Adv ; 9(20): eadf8698, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37205756

RESUMO

Cyclin-dependent kinase 12 (CDK12) interacts with cyclin K to form a functional nuclear kinase that promotes processive transcription elongation through phosphorylation of the C-terminal domain of RNA polymerase II (Pol II). To gain a comprehensive understanding of CDK12's cellular function, we used chemical genetic and phosphoproteomic screening to identify a landscape of nuclear human CDK12 substrates, including regulators of transcription, chromatin organization, and RNA splicing. We further validated LEO1, a subunit of the polymerase-associated factor 1 complex (PAF1C), as a bona fide cellular substrate of CDK12. Acute depletion of LEO1, or substituting LEO1 phosphorylation sites with alanine, attenuated PAF1C association with elongating Pol II and impaired processive transcription elongation. Moreover, we discovered that LEO1 interacts with and is dephosphorylated by the Integrator-PP2A complex (INTAC) and that INTAC depletion promotes the association of PAF1C with Pol II. Together, this study reveals an uncharacterized role for CDK12 and INTAC in regulating LEO1 phosphorylation, providing important insights into gene transcription and its regulation.


Assuntos
Quinases Ciclina-Dependentes , RNA Polimerase II , Humanos , Fosforilação/genética , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , RNA Polimerase II/metabolismo , Núcleo Celular/metabolismo , Transcrição Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Nat Commun ; 14(1): 7274, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37949879

RESUMO

The HIV-1 Tat protein hijacks the Super Elongation Complex (SEC) to stimulate viral transcription and replication. However, the mechanisms underlying Tat activation and inactivation, which mediate HIV-1 productive and latent infection, respectively, remain incompletely understood. Here, through a targeted complementary DNA (cDNA) expression screening, we identify PRMT2 as a key suppressor of Tat activation, thus contributing to proviral latency in multiple cell line latency models and in HIV-1-infected patient CD4+ T cells. Our data reveal that the transcriptional activity of Tat is oppositely regulated by NPM1-mediated nucleolar retention and AFF4-induced phase separation in the nucleoplasm. PRMT2 preferentially methylates Tat arginine 52 (R52) to reinforce its nucleolar sequestration while simultaneously counteracting its incorporation into the SEC droplets, thereby leading to its functional inactivation to promote proviral latency. Thus, our studies unveil a central and unappreciated role for Tat methylation by PRMT2 in connecting its subnuclear distribution, liquid droplet formation, and transactivating function, which could be therapeutically targeted to eradicate latent viral reservoirs.


Assuntos
Infecções por HIV , HIV-1 , Humanos , HIV-1/fisiologia , Fatores de Elongação da Transcrição/metabolismo , Linhagem Celular , Provírus/genética , Linfócitos T/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Latência Viral/genética , Infecções por HIV/genética , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA