Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39078320

RESUMO

Objective: Keloids are benign fibroproliferative disorders with invasive growth exceeding the wound boundary. Aurora kinase A (AURKA) is a serine/threonine kinase highly expressed in various tumors, facilitating tumor growth and invasion. Currently, the role of AURKA in keloid remains unclear. Approach: Fibroblasts were isolated from keloid and normal skin samples. AURKA was evaluated by qPCR, Western blot, and immunohistochemistry. Transcriptome sequencing and dual-luciferase reporter assays were applied to figure out targets of AURKA. Following expression alteration and MLN8237 (an AURKA kinase inhibitor, AKI) treatment, phenotypical experiments were conducted to clarify biological functions of AURKA along with its target, and to probe into the clinical potential of AURKA inhibition. Results: AURKA was upregulated in keloid tissues and fibroblasts. Forkhead box O 3a (FOXO3a) was verified as a downstream of AURKA. Further experiments demonstrated that AURKA transactivated FOXO3a by binding to FOXO3a, while FOXO3a directly transactivated AURKA. Functionally, AURKA and FOXO3a cooperated in enhancing the proliferation and migration of keloid fibroblasts via protein kinase B (AKT) phosphorylation. Although MLN8237 weakened the proliferation and migration in keloid fibroblasts, the transactivation of AURKA on FOXO3a was independent of kinase activity. Innovation: This study reveals that AURKA and FOXO3a compose a transactivation loop in enhancing the proliferative and migrative properties of keloid fibroblasts, and proposes AURKA as a promising target. Conclusion: AURKA/FOXO3a loop promotes the proliferation and migration of keloid fibroblasts via AKT signaling. Despite the anti-keloid effects of AKIs, AURKA acts as a transcription factor independently of kinase activity, deepening our understanding on AKI insensitivity.

2.
J Cancer Res Clin Oncol ; 149(12): 10781-10796, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37314513

RESUMO

BACKGROUND: Ultra-Violet Radiation (UVR) is the most significant exogenous contributor to skin aging. UVB causes the senescence of melanocytes, which results in a permanent arrest in the proliferative process. Senescence is also regarded as a physiological tumor-suppressing mechanism of normal cells. However, the mechanism of the relationship between melanocyte senescence and melanoma was not sufficiently clarified. METHODS: Melanocytes and melanoma cells were irradiated with UVB for the indicated time. The miRNA expression profile of melanocytes were obtained by miRNA sequencing and confirmed by real-time PCR. Cell count kit-8 assays, cell cycle assays were also employed to explore the effect of miR-656-3p and LMNB2 on senescence. Dual-luciferase reporter assays were applied to determine the miRNA targets. Finally, a xenograft model and a photoaging model of mice were conducted to verified the function of miR-656-3p in vivo. RESULTS: Melanoma cells did not alter into a senescence stage and the expressions of miR-656-3p had no significant changes under the same intensity of UVB radiation. miR-656-3p appeared to be upregulated in melanocytes rather than melanoma cells after UVB radiation. miR-656-3p could promote the photoaging of human primary melanocytes by targeting LMNB2. Finally, overexpression of miR-656-3p significantly induced senescence and inhibited the growth of melanomas in vitro and in vivo. CONCLUSION: Our work not only demonstrated the mechanism by which miR-656-3p induced the senescence of melanocytes but also proposed a treatment strategy for melanomas by using miR-656-3p to induce senescence.

3.
Clin Cosmet Investig Dermatol ; 15: 339-345, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250288

RESUMO

Spitz nevus (SN) is a benign melanocytic lesion with cytologic and architectural atypia. It is sometimes difficult to distinguish SNs from atypical Spitz tumor (AST), Spitz melanoma, or conventional melanoma. SNs frequently develop in Caucasians and appear on the skin of the head and lower extremities. Lesions on the ear in Asian populations are rare. Here, we report a "red Spitz tumor" on the ear of a Chinese 18-year-old boy. Dermoscopic examination revealed possibly malignant features presented as polymorphous vessels along with central white area, pseudo-network depigmentation and atypical peripheral globular pattern. The results of histopathological examination strongly suggested that the neoplasm was a compound SN and no recurrences or metastases occurred during 1-year follow-up post-surgery. Further, we review the literature on 4 previously reported cases of SN on the ear and summarize the main points of SN diagnosis and differential diagnosis with atypical Spitz tumors and melanoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA