Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Lab Invest ; 102(5): 505-514, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35066566

RESUMO

LncRNAs and miRNAs are correlated with the pathogenesis of myocardial ischemia-reperfusion injury (MIRI). Whether lncRNA ROR or miR-185-5p plays a crucial role in MIRI is still unclear. In in-vitro, human cardiac myocytes (HCMs) were treated with hypoxia/reoxygenation (H/R). Wistar rats were used to set up an in-vitro I/R model by means of recanalization after ligation. Evaluation of the myocardial injury marker lactate dehydrogenase (LDH) in HCMs cells was performed. The expression of miR-185-5p and ROR, IL-1ß, and IL-18 were detected by qRT-PCR. ELISA was also performed to evaluate the secretion of IL-1ß and IL-18. Western blotting was carried out to determine CDK6, NLRP3, GSDMD-N, ASC, and cleaved-caspase1 protein expression. The relationship between miR-185-5p and CDK6 or ROR was confirmed by a dual-luciferase reporter assay. Our findings revealed that H/R treated HCMs showed a significantly decreased miR-185-5p expression and increased expression of CDK6 and ROR. ROR knockdown reduced H/R induced pyroptosis and inflammation, while knockdown of miR-185-5p accelerated the effect. Furthermore, miR-185-5p was negatively regulated and absorbed by ROR in HCMs. Overexpression of miR-185-5p reversed the H/R-induced cell pyroptosis and upregulation of LDH, IL-1ß, and IL-18. In HCMs, miR-185-5p was also negatively regulated and related to CDK6 expression. Moreover, overexpression of CDK6 significantly inhibited the effects of miR-185-5p mimics on the inflammatory response and pyroptosis of HCMs. Knockdown of ROR alleviated H/R-induced myocardial injury by elevating miR-185-5p and inhibiting CDK6 expression. Taken together, our results show that the ROR/miR-185-5p/CDK6 axis modulates cell pyroptosis induced by H/R and the inflammatory response of HCMs.


Assuntos
MicroRNAs , Traumatismo por Reperfusão Miocárdica , RNA Longo não Codificante , Animais , Hipóxia , Interleucina-18 , MicroRNAs/genética , MicroRNAs/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , RNA Longo não Codificante/genética , Ratos , Ratos Wistar
2.
Exp Mol Pathol ; 114: 104430, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32240614

RESUMO

BACKGROUND: Hypoxia/reoxygenation (H/R) injury of cardiomyocytes causes an irreversible damage to heart and largely results in acute myocardial infarction. Study has indicated lncRNA ROR aggravates myocardial ischemia/reperfusion (I/R) injury. Also, lncRNA ROR sponges miR-138 to promote osteogenesis. MiR-138 involves in hypoxic pulmonary vascular remodelling by targeting Mst1. However, the interaction between lncRNA ROR, miR-138 and Mst1 involved in myocardial H/R injury is still unknown. METHODS: H9C2 cells were used to establish H/R injury model. The expression levels of lncRNA ROR and miR-138 were modified by transfection with the miR-138 mimics or lncRNA ROR overexpression plasmid. MTT and flow cytometry analysis were performed to detect cell proliferation and apoptosis. Dual luciferase reporter assay was used to determine interaction between lncRNA ROR and miR-138 or miR-138 and Mst1. Expression levels of lncRNA ROR, miR-138, Mst1 and apoptosis-related markers were determined by qRT-PCR or western blotting. RESULTS: LncRNA ROR was significantly up-regulated, while miR-138 was obviously down-regulated in H/R-induced injury of H9C2 cells. Furthermore, miR-138 overexpression alleviated cardiac cell apoptosis induced by H/R injury. Mst1 was revealed to be a target of miR-138 and negatively regulated by miR-138. Mst1 overexpression reversed the protective effects of miR-138 on H/R injury of H9C2 cells. LncRNA ROR was identified as a sponge for miR-138. MiR-138 could protect H9C2 cells form H/R injury induced by lncRNA ROR overexpression. CONCLUSION: Our study provides that lncRNA ROR sponges miR-138 to aggravate H/R-induced myocardial cell injury by upregulating the expression of Mst1.


Assuntos
MicroRNAs/genética , Traumatismo por Reperfusão Miocárdica/genética , Proteínas Serina-Treonina Quinases/genética , RNA Longo não Codificante/genética , Animais , Apoptose/genética , Hipóxia Celular/genética , Modelos Animais de Doenças , Isquemia Miocárdica/genética , Isquemia Miocárdica/fisiopatologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Transdução de Sinais
3.
J Bioenerg Biomembr ; 51(6): 381-392, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31768721

RESUMO

Myocardial ischaemia reperfusion injury (MIRI) is considered the primary cause of death in patients with cardiovascular diseases. Recently, long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have been found to be involved in the pathogenesis of MIRI. However, whether lncRNA ROR and miR-124-3p play roles in MIRI and the underlying mechanism remain undetermined. HCMs were exposed to hypoxic conditions for 2 h followed by re-oxygenation (H/R) treatment. Expression of miR-124-3p and lncRNA ROR in HCMs was measured by qRT-PCR. TRAF6 expression was evaluated by qRT-PCR and western blotting. ELISA and qRT-PCR were conducted to assess the production of TNF-α, IL-6, and IL-1ß. The interaction between miR-124-3p and TRAF6, as well as between miR-124-3p and lncRNA ROR, was verified by dual-luciferase reporter assay. Cell apoptosis was detected by flow cytometry analysis. Our data revealed that miR-124-3p was significantly downregulated, while TRAF6 and lncRNA ROR were upregulated in both MIRI rat model and H/R treated HCMs. Overexpression of miR-124-3p reversed the H/R-induced cell apoptosis and upregulation of TNF-α, IL-6, and IL-1ß. Mechanistically, miR-124-3p bound and negatively regulated TRAF6 expression in HCMs. Moreover, TRAF6 overexpression significantly blocked the effects of miR-124-3p mimics on cell apoptosis and inflammatory response of HCMs, which involved the NF-κB pathway. Further analysis showed that lncRNA ROR sponged and negatively regulated miR-124-3p in HCMs. Overexpression of IL-1ß was demonstrated to promote H/R induced cell apoptosis in HCMs. In addition, overexpression of ROR further enhanced the H/R-induced inflammation and cell apoptosis through its action on miR-124-3p. The lncRNA ROR/miR-124-3p/TRAF6 axis regulated the H/R-induced cell apoptosis and inflammatory response of HCMs.


Assuntos
MicroRNAs/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , Miócitos Cardíacos/metabolismo , RNA Longo não Codificante/genética , Animais , Modelos Animais de Doenças , Humanos , Ratos , Ratos Sprague-Dawley , Transfecção
5.
Int J Mol Med ; 38(4): 1271-80, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27572468

RESUMO

The volatile anaesthetic isoflurane is one of the most frequently employed general anaesthetics in neonates, children and adults. Accumulating evidence demonstrated that exposure to anaesthetics is associated with widespread neurodegeneration and cognitive impairment. Thus, the identification and development of compounds capable of preventing or reducing these adverse effects is of great clinical importance. For this purpose, the present study aimed to assess the effects of a flavonoid, naringenin, on isoflurane-induced neuroapoptosis and cognitive impairment. Separate groups of neonatal rat pups were administered naringenin at 25, 50 or 100 mg/kg body weight from postnatal day 1 (P1) to P21. On P7, the pups were exposed to 6 h of isoflurane (0.75%) anaesthesia. Neuroapoptosis was examined using the TUNEL assay. The expression of cleaved caspase-3, the apoptotic pathway proteins (Bad, Bax, Bcl-2 and Bcl-xL), the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway proteins [Akt, phosphorylated (-)Akt, glycogen synthase kinase 3ß (GSK­3ß), p­GSK-3ß, phosphatase and tensin homolog (PTEN)] and nuclear factor-κB (NF-κB)­mediated signalling proteins were determined by western blot analysis. General behaviour, as well as the learning ability and memory of the pups were assessed. Naringenin significantly inhibited isoflurane­induced neuroapoptosis and markedly decreased the protein expression of caspase-3, Bad, Bax, NF-κB, tumor necrosis factor-α, interleukin (IL)-6 and IL-1ß. Furthermore, naringenin increased the expression of Bcl-xL and Bcl-2 and activated the PI3K/Akt pathway. Significant improvements in learning capacity and memory retention were observed following naringenin treatment. Naringenin effectively ameliorated cognitive dysfunction and reduced isoflurane­induced apoptosis as well as modulating the PI3/Akt/PTEN and NF-κB signalling pathways.


Assuntos
Anestesia , Apoptose/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Flavanonas/uso terapêutico , Inflamação/patologia , NF-kappa B/metabolismo , Neurônios/patologia , Transdução de Sinais , Administração por Inalação , Animais , Comportamento Animal/efeitos dos fármacos , Caspase 3/metabolismo , Disfunção Cognitiva/patologia , Disfunção Cognitiva/fisiopatologia , Feminino , Flavanonas/farmacologia , Inflamação/metabolismo , Isoflurano , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Neurônios/efeitos dos fármacos , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA