Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 326
Filtrar
1.
Nature ; 615(7952): 526-534, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36890225

RESUMO

The nucleolus is the most prominent membraneless condensate in the nucleus. It comprises hundreds of proteins with distinct roles in the rapid transcription of ribosomal RNA (rRNA) and efficient processing within units comprising a fibrillar centre and a dense fibrillar component and ribosome assembly in a granular component1. The precise localization of most nucleolar proteins and whether their specific localization contributes to the radial flux of pre-rRNA processing have remained unknown owing to insufficient resolution in imaging studies2-5. Therefore, how these nucleolar proteins are functionally coordinated with stepwise pre-rRNA processing requires further investigation. Here we screened 200 candidate nucleolar proteins using high-resolution live-cell microscopy and identified 12 proteins that are enriched towards the periphery of the dense fibrillar component (PDFC). Among these proteins, unhealthy ribosome biogenesis 1 (URB1) is a static, nucleolar protein that ensures 3' end pre-rRNA anchoring and folding for U8 small nucleolar RNA recognition and the subsequent removal of the 3' external transcribed spacer (ETS) at the dense fibrillar component-PDFC boundary. URB1 depletion leads to a disrupted PDFC, uncontrolled pre-rRNA movement, altered pre-rRNA conformation and retention of the 3' ETS. These aberrant 3' ETS-attached pre-rRNA intermediates activate exosome-dependent nucleolar surveillance, resulting in decreased 28S rRNA production, head malformations in zebrafish and delayed embryonic development in mice. This study provides insight into functional sub-nucleolar organization and identifies a physiologically essential step in rRNA maturation that requires the static protein URB1 in the phase-separated nucleolus.


Assuntos
Nucléolo Celular , Exossomos , Precursores de RNA , Processamento Pós-Transcricional do RNA , RNA Ribossômico , Peixe-Zebra , Animais , Camundongos , Nucléolo Celular/metabolismo , Desenvolvimento Embrionário , Exossomos/metabolismo , Cabeça/anormalidades , Microscopia , Proteínas Nucleares/metabolismo , Precursores de RNA/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA Ribossômico 28S/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
2.
Nat Methods ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965442

RESUMO

Dynamic imaging of genomic loci is key for understanding gene regulation, but methods for imaging genomes, in particular non-repetitive DNAs, are limited. We developed CRISPRdelight, a DNA-labeling system based on endonuclease-deficient CRISPR-Cas12a (dCas12a), with an engineered CRISPR array to track DNA location and motion. CRISPRdelight enables robust imaging of all examined 12 non-repetitive genomic loci in different cell lines. We revealed the confined movement of the CCAT1 locus (chr8q24) at the nuclear periphery for repressed expression and active motion in the interior nucleus for transcription. We uncovered the selective repositioning of HSP gene loci to nuclear speckles, including a remarkable relocation of HSPH1 (chr13q12) for elevated transcription during stresses. Combining CRISPR-dCas12a and RNA aptamers allowed multiplex imaging of four types of satellite DNA loci with a single array, revealing their spatial proximity to the nucleolus-associated domain. CRISPRdelight is a user-friendly and robust system for imaging and tracking genomic dynamics and regulation.

3.
Mol Cell ; 76(6): 981-997.e7, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31757757

RESUMO

Visualizing the location and dynamics of RNAs in live cells is key to understanding their function. Here, we identify two endonuclease-deficient, single-component programmable RNA-guided and RNA-targeting Cas13 RNases (dCas13s) that allow robust real-time imaging and tracking of RNAs in live cells, even when using single 20- to 27-nt-long guide RNAs. Compared to the aptamer-based MS2-MCP strategy, an optimized dCas13 system is user friendly, does not require genetic manipulation, and achieves comparable RNA-labeling efficiency. We demonstrate that the dCas13 system is capable of labeling NEAT1, SatIII, MUC4, and GCN4 RNAs and allows the study of paraspeckle-associated NEAT1 dynamics. Applying orthogonal dCas13 proteins or combining dCas13 and MS2-MCP allows dual-color imaging of RNAs in single cells. Further combination of dCas13 and dCas9 systems allows simultaneous visualization of genomic DNA and RNA transcripts in living cells.


Assuntos
Imagem Molecular/métodos , RNA/fisiologia , Imagem Individual de Molécula/métodos , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Humanos , Mucina-4 , Engenharia de Proteínas/métodos , RNA Guia de Cinetoplastídeos/genética , RNA Longo não Codificante , Ribonucleases/genética , Ribonucleases/metabolismo , Coloração e Rotulagem/métodos
4.
Mol Cell ; 76(5): 767-783.e11, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31540874

RESUMO

Fibrillar centers (FCs) and dense fibrillar components (DFCs) are essential morphologically distinct sub-regions of mammalian cell nucleoli for rDNA transcription and pre-rRNA processing. Here, we report that a human nucleolus consists of several dozen FC/DFC units, each containing 2-3 transcriptionally active rDNAs at the FC/DFC border. Pre-rRNA processing factors, such as fibrillarin (FBL), form 18-24 clusters that further assemble into the DFC surrounding the FC. Mechanistically, the 5' end of nascent 47S pre-rRNA binds co-transcriptionally to the RNA-binding domain of FBL. FBL diffuses to the DFC, where local self-association via its glycine- and arginine-rich (GAR) domain forms phase-separated clusters to immobilize FBL-interacting pre-rRNA, thus promoting directional traffic of nascent pre-rRNA while facilitating pre-rRNA processing and DFC formation. These results unveil FC/DFC ultrastructures in nucleoli and suggest a conceptual framework for considering nascent RNA sorting using multivalent interactions of their binding proteins.


Assuntos
Nucléolo Celular/metabolismo , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico/metabolismo , Transporte Ativo do Núcleo Celular , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Nucléolo Celular/genética , Nucléolo Celular/ultraestrutura , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Feminino , Células HEK293 , Células HeLa , Humanos , Conformação de Ácido Nucleico , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Precursores de RNA/genética , Precursores de RNA/ultraestrutura , RNA Ribossômico/genética , RNA Ribossômico/ultraestrutura
5.
Chem Soc Rev ; 53(2): 714-763, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38105711

RESUMO

As an important strategic resource, rare earths (REs) constitute 17 elements in the periodic table, namely 15 lanthanides (Ln) (La-Lu, atomic numbers from 57 to 71), scandium (Sc, atomic number 21) and yttrium (Y, atomic number 39). In the field of catalysis, the localization and incomplete filling of 4f electrons endow REs with unique physical and chemical properties, including rich electronic energy level structures, variable coordination numbers, etc., making them have great potential in electrocatalysis. Among various RE catalytic materials, rare earth oxide (REO)-based electrocatalysts exhibit excellent performances in electrocatalytic reactions due to their simple preparation process and strong structural variability. At the same time, the electronic orbital structure of REs exhibits excellent electron transfer ability, which can reduce the band gap and energy barrier values of rate-determining steps, further accelerating the electron transfer in the electrocatalytic reaction process; however, there is a lack of systematic review of recent advances in REO-based electrocatalysis. This review systematically summarizes the synthesis, properties and applications of REO-based nanocatalysts and discusses their applications in electrocatalysis in detail. It includes the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), hydrogen oxidation reaction (HOR), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO2RR), methanol oxidation reaction (MOR), nitrogen reduction reaction (NRR) and other electrocatalytic reactions and further discusses the catalytic mechanism of REs in the above reactions. This review provides a timely and comprehensive summary of the current progress in the application of RE-based nanomaterials in electrocatalytic reactions and provides reasonable prospects for future electrocatalytic applications of REO-based materials.

6.
Chem Soc Rev ; 53(4): 2211-2247, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240305

RESUMO

Recently, high-entropy (HE) materials have attracted increasing interest in various fields due to their unique characteristics. Rare earth (RE) elements have a similar atomic radius and gradually occupied 4f orbitals, endowing them with abundant optical, electric, and magnetic properties. Furthermore, HE-RE materials exhibit good structural and thermal stability and various functional properties, emerging as an important class of HE materials, which are on the verge of rapid development. However, a comprehensive review focusing on the introduction and in-depth understanding of HE-RE materials has not been reported to date. Thus, this review endeavors to provide a comprehensive summary of the development and research status of HE-RE materials, including alloys and ceramics, ranging from their structure, synthesis, and properties to applications. In addition, some distinctive issues of HR-RE materials related to the special electronic structure of RE are also discussed. Finally, we put forward the current challenges and future development directions of HE-RE materials. We hope that this review will provide inspiration for new design ideas and valuable references in this emerging field in the future.

7.
J Am Chem Soc ; 146(13): 9012-9025, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38516778

RESUMO

The development of efficient and stable catalysts for hydrogen production from electrolytic water in a wide pH range is of great significance in alleviating the energy crisis. Herein, Pt nanoparticles (NPs) anchored on the vacancy of high entropy rare earth oxides (HEREOs) were prepared for the first time for highly efficient hydrogen production by water electrolysis. The prepared Pt-(LaCeSmYErGdYb)O showed excellent electrochemical performances, which require only 12, 57, and 77 mV to achieve a current density of 100 mA cm-2 in 0.5 M H2SO4, 1.0 M KOH, and 1.0 M PBS environments, respectively. In addition, Pt-(LaCeSmYErGdYb)O has successfully worked at 400 mA cm-2 @ 60 °C for 100 h in 0.5 M H2SO4, presenting the high mass activity of 37.7 A mg-1Pt and turnover frequency (TOF) value of 38.2 s-1 @ 12 mV, which is far superior to the recently reported hydrogen evolution reaction (HER) catalysts. Density functional theory (DFT) calculations have revealed that the interactions between Pt and HEREO have optimized the electronic structures for electron transfer and the binding strength of intermediates. This further leads to optimized proton binding and water dissociation, supporting the highly efficient and robust HER performances in different environments. This work provides a new idea for the design of efficient RE-based electrocatalysts.

8.
Nat Methods ; 18(1): 51-59, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33288960

RESUMO

Circular RNAs (circRNAs) produced from back-spliced exons are widely expressed, but individual circRNA functions remain poorly understood owing to the lack of adequate methods for distinguishing circRNAs from cognate messenger RNAs with overlapping exons. Here, we report that CRISPR-RfxCas13d can effectively discriminate circRNAs from mRNAs by using guide RNAs targeting sequences spanning back-splicing junction (BSJ) sites featured in RNA circles. Using a lentiviral library that targets sequences across BSJ sites of highly expressed human circRNAs, we show that a group of circRNAs are important for cell growth mostly in a cell-type-specific manner and that a common oncogenic circRNA, circFAM120A, promotes cell proliferation by preventing the mRNA for family with sequence similarity 120A (FAM120A) from binding the translation inhibitor IGF2BP2. Further application of RfxCas13d-BSJ-gRNA screening has uncovered circMan1a2, which has regulatory potential in mouse embryo preimplantation development. Together, these results establish CRISPR-RfxCas13d as a useful tool for the discovery and functional study of circRNAs at both individual and large-scale levels.


Assuntos
Sistemas CRISPR-Cas , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica , RNA Circular/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Processamento Alternativo , Animais , Apoptose , Proliferação de Células , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
9.
J Assist Reprod Genet ; 41(3): 757-765, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38270748

RESUMO

PURPOSE: To investigate the prevalence of Y chromosome polymorphisms in Chinese men and analyze their associations with male infertility and female adverse pregnancy outcomes. METHODS: The clinical data of 32,055 Chinese men who underwent karyotype analysis from October 2014 to September 2019 were collected. Fisher's exact test, chi-square test, or Kruskal-Wallis test was used to analyze the effects of Y chromosome polymorphism on semen parameters, azoospermia factor (AZF) microdeletions, and female adverse pregnancy outcomes. RESULTS: The incidence of Y chromosome polymorphic variants was 1.19% (381/32,055) in Chinese men. The incidence of non-obstructive azoospermia (NOA) was significantly higher in men with the Yqh- variant than that in men with normal karyotype and other Y chromosome polymorphic variants (p < 0.050). The incidence of AZF microdeletions was significantly different among the normal karyotype and different Y chromosome polymorphic variant groups (p < 0.001). The detection rate of AZF microdeletions was 28.92% (24/83) in the Yqh- group and 2.50% (3/120) in the Y ≤ 21 group. The AZFb + c region was the most common AZF microdeletion (78.57%, 22/28), followed by AZFc microdeletion (7.14%,2/28) in NOA patients with Yqh- variants. There was no significant difference in the distribution of female adverse pregnancy outcomes among the normal karyotype and different Y chromosome polymorphic variant groups (p = 0.528). CONCLUSIONS: Patients with 46,XYqh- variant have a higher incidence of NOA and AZF microdeletions than patients with normal karyotype and other Y chromosome polymorphic variants. Y chromosome polymorphic variants do not affect female adverse pregnancy outcomes.


Assuntos
Azoospermia , Infertilidade Masculina , Oligospermia , Humanos , Masculino , Feminino , Azoospermia/epidemiologia , Azoospermia/genética , Estudos Retrospectivos , Deleção Cromossômica , Infertilidade Masculina/genética , Cromossomos Humanos Y/genética , China/epidemiologia , Oligospermia/genética
10.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39000450

RESUMO

GdmCl and NaSCN are two strong chaotropic salts commonly used in protein folding and stability studies, but their microscopic mechanisms remain enigmatic. Here, by CD and NMR, we investigated their effects on conformations, stability, binding and backbone dynamics on ps-ns and µs-ms time scales of a 39-residue but well-folded WW4 domain at salt concentrations ≤200 mM. Up to 200 mM, both denaturants did not alter the tertiary packing of WW4, but GdmCl exerted more severe destabilization than NaSCN. Intriguingly, GdmCl had only weak binding to amide protons, while NaSCN showed extensive binding to both hydrophobic side chains and amide protons. Neither denaturant significantly affected the overall ps-ns backbone dynamics, but they distinctively altered µs-ms backbone dynamics. This study unveils that GdmCl and NaSCN destabilize a protein before the global unfolding occurs with differential binding properties and µs-ms backbone dynamics, implying the absence of a simple correlation between thermodynamic stability and backbone dynamics of WW4 at both ps-ns and µs-ms time scales.


Assuntos
Estabilidade Proteica , Espectroscopia de Ressonância Magnética/métodos , Termodinâmica , Dobramento de Proteína , Desnaturação Proteica , Domínios WW , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Simulação de Dinâmica Molecular
11.
J Biol Chem ; 298(6): 101940, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35430253

RESUMO

Trafficking of M-protein (Mprt) from the cytosol of Group A Streptococcus pyogenes (GAS) occurs via Sec translocase membrane channels that associate with Sortase A (SrtA), an enzyme that catalyzes cleavage of Mprt at the proximal C-terminal [-LPST355∗GEAA-] motif and subsequent transpeptidation of the Mprt-containing product to the cell wall (CW). These steps facilitate stable exposure of the N-terminus of Mprt to the extracellular milieu where it interacts with ligands. Previously, we found that inactivation of SrtA in GAS cells eliminated Mprt CW transpeptidation but effected little reduction in its cell surface exposure, indicating that the C-terminus of Mprt retained in the cytoplasmic membrane (CM) extends its N-terminus to the cell surface. Herein, we assessed the effects of mutating the Thr355 residue in the WT SrtA consensus sequence (LPST355∗GEAA-) in a specific Mprt, PAM. In vitro, we found that synthetic peptides with mutations (LPSX355GEAA) in the SrtA cleavage site displayed slower cleavage activities with rSrtA than the WT peptide. Aromatic residues at X had the lowest activities. Nonetheless, PAM/[Y355G] still transpeptidated the CW in vivo. However, when using isolated CMs from srtA-inactivated GAS cells, rapid cleavage of PAM/[LPSY355GEAA] occurred at E357∗ but transpeptidation did not take place. These results show that another CM-resident enzyme nonproductively cleaved PAM/[LPSYGE357∗AA]. However, SrtA associated with the translocon channel in vivo cleaved and transpeptidated PAM/[LPSX355∗GEAA] variants. These CM features allow diverse cleavage site variants to covalently attach to the CW despite the presence of other potent nonproductive CM proteases.


Assuntos
Aminoaciltransferases , Proteínas de Bactérias , Parede Celular , Streptococcus pyogenes , Aminoaciltransferases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Evolução Biológica , Parede Celular/metabolismo , Cisteína Endopeptidases , Mutação , Streptococcus pyogenes/classificação , Streptococcus pyogenes/enzimologia
12.
RNA ; 27(12): 1427-1440, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34526358

RESUMO

Although long noncoding RNAs (lncRNAs) are generally expressed at low levels, emerging evidence has revealed that many play important roles in gene regulation by a variety of mechanisms as they engage with proteins. Given that the abundance of proteins often greatly exceeds that of their interacting lncRNAs, quantification of the relative abundance, or even the exact stoichiometry in some cases, within lncRNA-protein complexes is helpful for understanding of the mechanism(s) of action of lncRNAs. We discuss methods used to examine lncRNA and protein expression at the single cell, subcellular, and suborganelle levels, the average and local lncRNA concentration in cells, as well as how lncRNAs can modulate the functions of their interacting proteins even at a low stoichiometric concentration.


Assuntos
RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/metabolismo , Animais , Regulação da Expressão Gênica , Humanos , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas/genética
13.
RNA Biol ; 20(1): 419-430, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37405372

RESUMO

The genetic disorder Prader-Willi syndrome (PWS) is mainly caused by the loss of multiple paternally expressed genes in chromosome 15q11-q13 (the PWS region). Early diagnosis of PWS is essential for timely treatment, leading to effectively easing some clinical symptoms. Molecular approaches for PWS diagnosis at the DNA level are available, but the diagnosis of PWS at the RNA level has been limited. Here, we show that a cluster of paternally transcribed snoRNA-ended long noncoding RNAs (sno-lncRNAs, sno-lncRNA1-5) derived from the SNORD116 locus in the PWS region can serve as diagnostic markers. In particular, quantification analysis has revealed that 6,000 copies of sno-lncRNA3 are present in 1 µL whole blood samples from non-PWS individuals. sno-lncRNA3 is absent in all examined whole blood samples of 8 PWS individuals compared to 42 non-PWS individuals and dried blood samples of 35 PWS individuals compared to 24 non-PWS individuals. Further developing a new CRISPR-MhdCas13c system for RNA detection with a sensitivity of 10 molecules per µL has ensured sno-lncRNA3 detection in non-PWS, but not PWS individuals. Together, we suggest that the absence of sno-lncRNA3 represents a potential marker for PWS diagnosis that can be detected by both RT-qPCR and CRISPR-MhdCas13c systems with only microlitre amount of blood samples. Such an RNA-based sensitive and convenient approach may facilitate the early detection of PWS.


Assuntos
Síndrome de Prader-Willi , RNA Longo não Codificante , Humanos , Síndrome de Prader-Willi/diagnóstico , Síndrome de Prader-Willi/genética , RNA Longo não Codificante/genética , RNA Nucleolar Pequeno/genética
14.
Eur Arch Otorhinolaryngol ; 280(4): 1793-1802, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36335249

RESUMO

PURPOSE: To investigate the efficacy of chemotherapy among intermediate-risk (stage II/T3N0) nasopharyngeal carcinoma (NPC) patients receiving radiotherapy (RT). METHODS: We identified stage II/T3N0 NPC patients who received radiotherapy with or without chemotherapy from the Surveillance, Epidemiology and End Results database (2004-2019). Overall survival (OS) and cancer-specific survival (CSS) were assessed using the Kaplan-Meier method with log-rank test and Cox proportional hazards models to evaluate the efficacy of chemotherapy. Subgroup analysis was also conducted based on the baseline characteristics. Propensity score matching (PSM) was performed to balance the intergroup covariates. RESULTS: A total of 1623 patients were enrolled in the study, 1444 received chemoradiotherapy (CRT) and 179 received RT alone. CRT, compared to RT alone, was independently associated with a better OS (HR 0.57, 95% CI 0.45-0.71) and CSS (HR 0.55, 95% CI 0.39-0.79). After PSM, similar results were obtained, and CRT was superior to RT alone in terms of OS (HR 0.60, 95% CI 0.39-0.92) and CSS (HR 0.60, 95% CI 0.40-0.91). Subgroup analysis revealed that OS benefits from CRT were mainly observed in T0-2N1(HR 0.51, 95% CI 0.38-0.70) and T3N0 (HR 0.64, 95% CI 0.42-0.98) rather than T2N0 (HR 1.00, 95% CI 0.51-1.94). Interestingly, after PSM, OS benefits were still seen in T0-2N1 (HR 0.44, 95% CI 0.24-0.82), while not seen in T2N0 (HR 1.83, 95% CI 0.56-5.97) and T3N0 (HR 0.56, 95% CI 0.28-1.12). CONCLUSION: For T0-2N1 NPC patients, CRT was superior to RT alone with better survival, whereas, for T2-3N0 patients, CRT was comparable to RT alone. Prospective large studies should be encouraged to verify the results.


Assuntos
Quimiorradioterapia , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/patologia , Estudos Prospectivos , Estimativa de Kaplan-Meier , Quimiorradioterapia/métodos , Neoplasias Nasofaríngeas/tratamento farmacológico , Estadiamento de Neoplasias
15.
Molecules ; 28(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36838861

RESUMO

This study examined the preparation of isobornyl acetate/isoborneol from camphene using an α-hydroxyl carboxylic acid (HCA) composite catalyst. Through the study of the influencing factors, it was found that HCA and boric acid exhibited significant synergistic catalysis. Under optimal conditions, when tartaric acid-boric acid was used as the catalyst, the conversion of camphene and the gas chromatography (GC) content and selectivity of isobornyl acetate were 92.9%, 88.5%, and 95.3%, respectively. With the increase in the ratio of water to acetic acid, the GC content and selectivity of isobornol in the product increased, but the conversion of camphene decreased. The yield of isobornol was increased by adding ethyl acetate or titanium sulfate/zirconium sulfate to form a ternary composite catalyst. When a ternary complex of titanium sulfate, tartaric acid, and boric acid was used as the catalyst, the GC content of isobornol in the product reached 55.6%. Under solvent-free conditions, mandelic acid-boric acid could catalyze the hydration reaction of camphene, the GC content of isoborneol in the product reached 26.1%, and the selectivity of isoborneol was 55.9%. The HCA-boric acid composite catalyst can use aqueous acetic acid as a raw material, which is also beneficial for the reuse of the catalyst.


Assuntos
Ácidos Carboxílicos , Titânio , Ácidos Carboxílicos/química , Monoterpenos Bicíclicos , Água/química , Ácido Acético , Catálise , Sulfatos
16.
Planta ; 256(3): 53, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35913571

RESUMO

MAIN CONCLUSION: CG and CHG methylation levels in the rapid shoot growth stages (ST2-ST4) of woody bamboos were obviously decreased, which might regulate the internode elongation during rapid shoot growth, while CHH methylation was strongly associated with shoot developmental time or age. DNA methylation plays a critical role in the regulation of plant growth and development. Woody bamboos have a unique trait of rapid stem growth resulted from internode elongation at the shooting period. However, it is still unclear whether DNA methylation significantly controls the bamboo rapid stem growth. Here we present whole-genome DNA methylation profiles of the paleotropical woody bamboo Bonia amplexicaulis at five newly defined stages of shoot growth, named ST1-ST5. We found that CG and CHG methylation levels in the rapid shoot growth stages (ST2-ST4) were significantly lower than in the incubation (ST1) and plateau stages (ST5). The changes in methylation levels mainly occurred in flanking regions of genes and gene body regions, and 23647 differentially methylated regions (DMRs) were identified between ST1 and rapid shoot growth stages (ST2-ST4). Combined with transcriptome analysis, we found that DMR-related genes enriched in the auxin and jasmonic acid (JA) signal transduction, and other pathways closely related to plant growth. Intriguingly, CHH methylation was not involved in the rapid shoot growth, but strongly associated with shoot developmental time by gradually accumulating in transposable elements (TEs) regions. Overall, our results reveal the importance of DNA methylation in regulating the bamboo rapid shoot growth and suggest a role of DNA methylation associated with development time or age in woody bamboos.


Assuntos
Metilação de DNA , Epigenoma , Metilação de DNA/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Poaceae/genética
17.
J Assist Reprod Genet ; 39(8): 1779-1787, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35870097

RESUMO

PURPOSE: Testicular sperm aspiration (TESA) is widely used to retrieve sperm from testis. Diagnostic testicular biopsy should not be routinely performed for azoospermia. Therefore, a good predictive model is needed before TESA. METHODS: A total of 1972 azoospermia patients constituted the modelling set, and 260 azoospermia patients from two other centres constituted the validation set. An integrated predictive model was built using logistic regression. Receiver operating characteristic (ROC), calibration and decision curve analyses were performed to evaluate the performance of follicle-stimulating hormone (FSH), semen volume, testicular volume and the integrated model. RESULTS: The FSH level was the best univariate predictor for successful sperm retrieval (SSR) and was better than semen volume and testicular volume alone (p<0.001, threshold 6.17 IU/L, modelling set area under receiver operating characteristic curve (AUC) 0.80, accuracy 0.79; validation set AUC 0.87, accuracy 0.78). The integrated predictive model had excellent accuracy for predicting SSR (modelling set: AUC 0.93, accuracy 0.89; validation set: AUC 0.96, accuracy: 0.89). Calibration curve analysis indicated that the integrated model calibration was good and better than that of FSH, semen volume and testicular volume alone. Decision curve analysis indicated with a threshold probability between 0.05 and 0.98, the integrated model added more benefit than treating either all or no patients. CONCLUSIONS: The integrated model has excellent discrimination and good calibration. It can help azoospermic men make better decisions before TESA. It should be noted that TESA is not the first-line treatment for non-obstructive azoospermia because of a low sperm retrieval rate.


Assuntos
Azoospermia , Recuperação Espermática , Azoospermia/patologia , Estudos de Coortes , Hormônio Foliculoestimulante , Humanos , Masculino , Estudos Retrospectivos , Sêmen , Espermatozoides/patologia , Testículo/patologia
18.
Small ; 17(49): e2104423, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34708548

RESUMO

Layered double hydroxides (LDHs) have been considered as promising electrodes for supercapacitors due to their adjustable composition, designable function and superior high theoretic capacity. However, their experimental specific capacity is significantly lower than the theoretical value due to their small interlayer spacing. Therefore, obtaining large interlayer spacing through the intercalation of large-sized anions is an important means to improve capacity performance. Herein, a metal organic framework derived cobalt-nickel layered double hydroxide hollowcage intercalated with different concentrations of 1,4-benzenedicarboxylic acid (H2 BDC) through in-situ cationic etching and organic ligand intercalation method is designed and fabricated. The superior specific capacity and excellent rate performance are benefit from the large specific surface area of the hollow structure and increasing interlayer spacing of LDH after H2 BDC intercalation. The sample with the largest layer spacing displays a maximum specific capacity of 229 mA h g-1 at 1 A g-1 . In addition, the hybrid supercapacitor assembled from the sample with the largest layer spacing and active carbon electrode has a maximum specific capacity of 158 mA h g-1 at 1 A g-1 ; the energy density is as high as 126.4 W h kg-1 at 800 W kg-1 and good cycle stability.

19.
J Pharmacol Exp Ther ; 378(3): 276-286, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34253647

RESUMO

Our previous studies have shown that cathepsin L (CTSL) is involved in the ability of tumors to resist ionizing radiation (IR), but the specific mechanisms responsible for this remain unknown. We report here that mutant p53 (mut-p53) is involved in IR-induced transcription of CTSL. We found that irradiation caused activation of CTSL in mut-p53 cell lines, whereas there was almost no activation in p53 wild-type cell lines. Additionally, luciferase reporter gene assay results demonstrated that IR induced the p53 binding region on the CTSL promoter. We further demonstrated that the expression of p300 and early growth response factor-1 (Egr-1) was upregulated in mut-p53 cell lines after IR treatment. Accordingly, the expression of Ac-H3, Ac-H4, AcH3K9 was upregulated after IR treatment in mut-p53 cell lines, whereas histone deacetylase (HDAC) 4 and HDAC6 were reciprocally decreased. Moreover, knockdown of either Egr-1 or p300 abolished the binding of mut-p53 to the promoter of CTSL. Chromatin immunoprecipitation assay results showed that the IR-activated transcription of CTSL was dependent on p300. To further delineate the clinical relevance of interactions between Egr-1/p300, mut-p53, and CTSL, we accessed primary tumor samples to evaluate the relationships between mut-p53, CTSL, and Egr-1/p300 ex vivo. The results support the notion that mut-p53 is correlated with CTSL transcription involving the Egr-1/p300 pathway. Taken together, the results of our study revealed that p300 is an important target in the process of IR-induced transcription of CTSL, which confirms that CTSL participates in mut-p53 gain-of-function. SIGNIFICANCE STATEMENT: Transcriptional activation of cathepsin L by ionizing radiation required the involvement of mutated p53 and Egr-1/p300. Interference with Egr-1 or p300 could inhibit the expression of cathepsin L induced by ionizing radiation. The transcriptional activation of cathepsin L by p300 may be mediated by p53 binding sites on the cathepsin L promoter.


Assuntos
Catepsina L , Proteína Supressora de Tumor p53 , Histona Desacetilases , Proteínas Repressoras
20.
J Bacteriol ; 202(11)2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32205460

RESUMO

Streptococcus pyogenes, or group A Streptococcus (GAS), is both a pathogen and an asymptomatic colonizer of human hosts and produces a large number of surface-expressed and secreted factors that contribute to a variety of infection outcomes. The GAS-secreted cysteine protease SpeB has been well studied for its effects on the human host; however, despite its broad proteolytic activity, studies on how this factor is utilized in polymicrobial environments are lacking. Here, we utilized various forms of SpeB protease to evaluate its antimicrobial and antibiofilm properties against the clinically important human colonizer Staphylococcus aureus, which occupies niches similar to those of GAS. For our investigation, we used a skin-tropic GAS strain, AP53CovS+, and its isogenic ΔspeB mutant to compare the production and activity of native SpeB protease. We also generated active and inactive forms of recombinant purified SpeB for functional studies. We demonstrate that SpeB exhibits potent biofilm disruption activity at multiple stages of S. aureus biofilm formation. We hypothesized that the surface-expressed adhesin SdrC in S. aureus was cleaved by SpeB, which contributed to the observed biofilm disruption. Indeed, we found that SpeB cleaved recombinant SdrC in vitro and in the context of the full S. aureus biofilm. Our results suggest an understudied role for the broadly proteolytic SpeB as an important factor for GAS colonization and competition with other microorganisms in its niche.IMPORTANCEStreptococcus pyogenes (GAS) causes a range of diseases in humans, ranging from mild to severe, and produces many virulence factors in order to be a successful pathogen. One factor produced by many GAS strains is the protease SpeB, which has been studied for its ability to cleave and degrade human proteins, an important factor in GAS pathogenesis. An understudied aspect of SpeB is the manner in which its broad proteolytic activity affects other microorganisms that co-occupy niches similar to that of GAS. The significance of the research reported herein is the demonstration that SpeB can degrade the biofilms of the human pathogen Staphylococcus aureus, which has important implications for how SpeB may be utilized by GAS to successfully compete in a polymicrobial environment.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes , Exotoxinas/metabolismo , Staphylococcus aureus/enzimologia , Staphylococcus aureus/fisiologia , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/enzimologia , Proteínas de Bactérias/genética , Exotoxinas/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Staphylococcus aureus/genética , Streptococcus pyogenes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA