Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Chem Res Toxicol ; 37(2): 323-339, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38200616

RESUMO

Despite being extremely relevant for the protection of prenatal and neonatal health, the developmental toxicity (Dev Tox) is a highly complex endpoint whose molecular rationale is still largely unknown. The lack of availability of high-quality data as well as robust nontesting methods makes its understanding even more difficult. Thus, the application of new explainable alternative methods is of utmost importance, with Dev Tox being one of the most animal-intensive research themes of regulatory toxicology. Descending from TIRESIA (Toxicology Intelligence and Regulatory Evaluations for Scientific and Industry Applications), the present work describes TISBE (TIRESIA Improved on Structure-Based Explainability), a new public web platform implementing four fundamental advancements for in silico analyses: a three times larger dataset, a transparent XAI (explainable artificial intelligence) framework employing a fragment-based fingerprint coding, a novel consensus classifier based on five independent machine learning models, and a new applicability domain (AD) method based on a double top-down approach for better estimating the prediction reliability. The training set (TS) includes as many as 1008 chemicals annotated with experimental toxicity values. Based on a 5-fold cross-validation, a median value of 0.410 for the Matthews correlation coefficient was calculated; TISBE was very effective, with a median value of sensitivity and specificity equal to 0.984 and 0.274, respectively. TISBE was applied on two external pools made of 1484 bioactive compounds and 85 pediatric drugs taken from ChEMBL (Chemical European Molecular Biology Laboratory) and TEDDY (Task-Force in Europe for Drug Development in the Young) repositories, respectively. Notably, TISBE gives users the option to clearly spot the molecular fragments responsible for the toxicity or the safety of a given chemical query and is available for free at https://prometheus.farmacia.uniba.it/tisbe.


Assuntos
Inteligência Artificial , Animais , Recém-Nascido , Criança , Humanos , Reprodutibilidade dos Testes , Consenso
2.
Molecules ; 29(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38893525

RESUMO

Oral anticoagulant therapy (OAT) for managing atrial fibrillation (AF) encompasses vitamin K antagonists (VKAs, such as warfarin), which was the mainstay of anticoagulation therapy before 2010, and direct-acting oral anticoagulants (DOACs, namely dabigatran etexilate, rivaroxaban, apixaban, edoxaban), approved for the prevention of AF stroke over the last thirteen years. Due to the lower risk of major bleeding associated with DOACs, anticoagulant switching is a common practice in AF patients. Nevertheless, there are issues related to OAT switching that still need to be fully understood, especially for patients in whom AF and heart failure (HF) coexist. Herein, the effective impact of the therapeutic switching from warfarin to DOACs in HF patients with AF, in terms of cardiac remodeling, clinical status, endothelial function and inflammatory biomarkers, was assessed by a machine learning (ML) analysis of a clinical database, which ultimately shed light on the real positive and pleiotropic effects mediated by DOACs in addition to their anticoagulant activity.


Assuntos
Anticoagulantes , Fibrilação Atrial , Insuficiência Cardíaca , Aprendizado de Máquina , Humanos , Fibrilação Atrial/tratamento farmacológico , Insuficiência Cardíaca/tratamento farmacológico , Anticoagulantes/uso terapêutico , Anticoagulantes/administração & dosagem , Anticoagulantes/farmacologia , Administração Oral , Masculino , Feminino , Idoso , Doença Crônica , Varfarina/uso terapêutico
3.
J Physiol ; 601(24): 5635-5653, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37937509

RESUMO

ClC-6 and ClC-7 are closely related, intracellular Cl- /H+ antiporters belonging to the CLC family of channels and transporters. They localize to acidic late endosomes and lysosomes and probably function in ionic homeostasis of these contiguous compartments. ClC-7 transport function requires association with the accessory protein Ostm1, whereas ClC-6 transport does not. To elucidate their roles in endo-lysosomes, we measured Cl- - and pH-dependences of over-expressed wild-type ClC-6 and ClC-7, as well as disease-associated mutants, using high-resolution recording protocols. Lowering extracellular Cl- (corresponding to luminal Cl- in endo-lysosomes) reduced ClC-6 currents, whereas it increased transport activity of ClC-7/Ostm1. Low extracellular Cl- activated ClC-7/Ostm 1 under acidic extracellular conditions, as well as under conditions of low intracellular chloride. Activation is conserved in ClC-7Y713C , a variant displaying disrupted PI(3,5)P2 inhibition. Detailed biophysical analysis of disease-associated ClC-6 and ClC-7 gain-of-function (GoF) variants, ClC-6Y553C and ClC-7Y713C , and the ClC-7Y577C and ClC-6Y781C correlates, identified additional functional nuances distinguishing ClC-6 and ClC-7. ClC-7Y577C recapitulated GoF produced by ClC-6Y553C . ClC-6Y781C displayed transport activation qualitatively similar to ClC-7Y713C , although current density did not differ from that of wild-type ClC-6. Finally, rClC-7R760Q , homologous to hClC-7R762Q , an osteopetrosis variant with fast gating kinetics, appeared indifferent to extracellular Cl- , identifying altered Cl- sensitivity as a plausible mechanism underlying disease. Collectively, the present studies underscore the distinct roles of ClC-6 and ClC-7 within the context of their respective localization to late endosomes and lysosomes. In particular, we suggest the atypical inhibition of ClC-7 by luminal Cl- serves to limit excessive intraluminal Cl- accumulation. KEY POINTS: ClC-6 and ClC-7 are late endosomal and lysosomal 2 Cl- /1 H+ exchangers, respectively. When targeted to the plasma membrane, both activate slowly at positive voltages. ClC-6 activity is decreased in low extracellular (i.e. luminal) chloride, whereas ClC-7 is activated by low luminal chloride, even at acidic pH. The functional gain-of-function phenotypes of the ClC-6 and ClC-7 disease mutations ClC-6Y553C and ClC-7Y715C are maintained when introduced in their respective homologues, ClC-7Y577C and ClC-6Y781C , with all mutations retaining chloride dependence of the respective wild type (WT). An osteopetrosis mutation of ClC-7 displaying fast gating kinetics (R762Q) was less sensitive to extracellular chloride compared to WT. The opposing substrate dependences of ClC-6 and ClC-7 Cl- / H+ exchangers point to non-overlapping physiological functions, leading us to propose that inhibition of ClC-7 by luminal chloride and protons serves to prevent osmotic stress imposed by hyper-accumulation of chloride.


Assuntos
Canais de Cloreto , Cloretos , Osteopetrose , Humanos , Canais de Cloreto/fisiologia , Cloretos/metabolismo , Homeostase , Lisossomos/metabolismo , Osteopetrose/metabolismo , Prótons
4.
Pharmacol Res ; 188: 106659, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36646190

RESUMO

Cardiorenal syndrome encompasses a spectrum of disorders involving heart and kidney dysfunction, and sharing common risk factors, such as hypertension and diabetes. Clinical studies have shown that patients with and without diabetes may benefit from using sodium-glucose cotransporter 2 inhibitors to reduce the risk of heart failure and ameliorate renal endpoints. Because the underlying mechanisms remain elusive, we investigated the effects of dapagliflozin on the progression of renal damage, using a model of non-diabetic cardiorenal disease. Dahl salt-sensitive rats were fed a high-salt diet for five weeks and then randomized to dapagliflozin or vehicle for the following six weeks. After treatment with dapagliflozin, renal function resulted ameliorated as shown by decrease of albuminuria and urine albumin-to-creatinine ratio. Functional benefit was accompanied by a decreased accumulation of extracellular matrix and a reduced number of sclerotic glomeruli. Dapagliflozin significantly reduced expression of inflammatory and endothelial activation markers such as NF-κB and e-selectin. Upregulation of pro-oxidant-releasing NADPH oxidases 2 and 4 as well as downregulation of antioxidant enzymes were also counteracted by drug treatment. Our findings also evidenced the modulation of both classic and non-classic renin-angiotensin-aldosterone system (RAAS), and effects of dapagliflozin on gene expression of ion channels/transporters involved in renal homeostasis. Thus, in a non-diabetic model of cardiorenal syndrome, dapagliflozin provides renal protection by modulating inflammatory response, endothelial activation, fibrosis, oxidative stress, local RAAS and ion channels.


Assuntos
Síndrome Cardiorrenal , Diabetes Mellitus , Animais , Ratos , Compostos Benzidrílicos/farmacologia , Compostos Benzidrílicos/uso terapêutico , Síndrome Cardiorrenal/tratamento farmacológico , Síndrome Cardiorrenal/metabolismo , Diabetes Mellitus/tratamento farmacológico , Rim/metabolismo , Ratos Endogâmicos Dahl
5.
Int J Mol Sci ; 24(5)2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36902405

RESUMO

Ultrasonography is a safe, non-invasive imaging technique used in several fields of medicine, offering the possibility to longitudinally monitor disease progression and treatment efficacy over time. This is particularly useful when a close follow-up is required, or in patients with pacemakers (not suitable for magnetic resonance imaging). By virtue of these advantages, ultrasonography is commonly used to detect multiple skeletal muscle structural and functional parameters in sports medicine, as well as in neuromuscular disorders, e.g., myotonic dystrophy and Duchenne muscular dystrophy (DMD). The recent development of high-resolution ultrasound devices allowed the use of this technique in preclinical settings, particularly for echocardiographic assessments that make use of specific guidelines, currently lacking for skeletal muscle measurements. In this review, we describe the state of the art for ultrasound skeletal muscle applications in preclinical studies conducted in small rodents, aiming to provide the scientific community with necessary information to support an independent validation of these procedures for the achievement of standard protocols and reference values useful in translational research on neuromuscular disorders.


Assuntos
Distrofia Muscular de Duchenne , Doenças Neuromusculares , Humanos , Músculo Esquelético , Ultrassonografia , Ecocardiografia
6.
Int J Mol Sci ; 23(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897654

RESUMO

Mutations in the KCNA1 gene, encoding the voltage-gated potassium channel Kv1.1, have been associated with a spectrum of neurological phenotypes, including episodic ataxia type 1 and developmental and epileptic encephalopathy. We have recently identified a de novo variant in KCNA1 in the highly conserved Pro-Val-Pro motif within the pore of the Kv1.1 channel in a girl affected by early onset epilepsy, ataxia and developmental delay. Other mutations causing severe epilepsy are located in Kv1.1 pore domain. The patient was initially treated with a combination of antiepileptic drugs with limited benefit. Finally, seizures and ataxia control were achieved with lacosamide and acetazolamide. The aim of this study was to functionally characterize Kv1.1 mutant channel to provide a genotype-phenotype correlation and discuss therapeutic options for KCNA1-related epilepsy. To this aim, we transfected HEK 293 cells with Kv1.1 or P403A cDNAs and recorded potassium currents through whole-cell patch-clamp. P403A channels showed smaller potassium currents, voltage-dependent activation shifted by +30 mV towards positive potentials and slower kinetics of activation compared with Kv1.1 wild-type. Heteromeric Kv1.1+P403A channels, resembling the condition of the heterozygous patient, confirmed a loss-of-function biophysical phenotype. Overall, the functional characterization of P403A channels correlates with the clinical symptoms of the patient and supports the observation that mutations associated with severe epileptic phenotype cluster in a highly conserved stretch of residues in Kv1.1 pore domain. This study also strengthens the beneficial effect of acetazolamide and sodium channel blockers in KCNA1 channelopathies.


Assuntos
Epilepsia , Canal de Potássio Kv1.1 , Acetazolamida , Ataxia/tratamento farmacológico , Ataxia/genética , Epilepsia/tratamento farmacológico , Epilepsia/genética , Células HEK293 , Humanos , Canal de Potássio Kv1.1/química , Canal de Potássio Kv1.1/genética , Mutação , Potássio
7.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34576077

RESUMO

Kv1.2 channels, encoded by the KCNA2 gene, are localized in the central and peripheral nervous system, where they regulate neuronal excitability. Recently, heterozygous mutations in KCNA2 have been associated with a spectrum of symptoms extending from epileptic encephalopathy, intellectual disability, and cerebellar ataxia. Patients are treated with a combination of antiepileptic drugs and 4-aminopyridine (4-AP) has been recently trialed in specific cases. We identified a novel variant in KCNA2, E236K, in a Serbian proband with non-progressive congenital ataxia and early onset epilepsy, treated with sodium valproate. To ascertain the pathogenicity of E236K mutation and to verify its sensitivity to 4-AP, we transfected HEK 293 cells with Kv1.2 WT or E236K cDNAs and recorded potassium currents through the whole-cell patch-clamp. In silico analysis supported the electrophysiological data. E236K channels showed voltage-dependent activation shifted towards negative potentials and slower kinetics of deactivation and activation compared with Kv1.2 WT. Heteromeric Kv1.2 WT+E236K channels, resembling the condition of the heterozygous patient, confirmed a mixed gain- and loss-of-function (GoF/LoF) biophysical phenotype. 4-AP inhibited both Kv1.2 and E236K channels with similar potency. Homology modeling studies of mutant channels suggested a reduced interaction between the residue K236 in the S2 segment and the gating charges at S4. Overall, the biophysical phenotype of E236K channels correlates with the mild end of the clinical spectrum reported in patients with GoF/LoF defects. The response to 4-AP corroborates existing evidence that KCNA2-disorders could benefit from variant-tailored therapeutic approaches, based on functional studies.


Assuntos
4-Aminopiridina/uso terapêutico , Ataxia Cerebelar/congênito , Ataxia Cerebelar/genética , Epilepsia/tratamento farmacológico , Epilepsia/genética , Canal de Potássio Kv1.2/genética , Sequência de Aminoácidos , Encéfalo/diagnóstico por imagem , Ataxia Cerebelar/diagnóstico por imagem , Ataxia Cerebelar/tratamento farmacológico , Criança , Pré-Escolar , Epilepsia/diagnóstico por imagem , Humanos , Lactente , Canal de Potássio Kv1.2/química , Imageamento por Ressonância Magnética , Masculino , Simulação de Dinâmica Molecular , Adulto Jovem
8.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204499

RESUMO

BACKGROUND: Brugada syndrome (BrS) is an autosomal dominantly inherited cardiac disease characterized by "coved type" ST-segment elevation in the right precordial leads, high susceptibility to ventricular arrhythmia and a family history of sudden cardiac death. The SCN5A gene, encoding for the cardiac voltage-gated sodium channel Nav1.5, accounts for ~20-30% of BrS cases and is considered clinically relevant. METHODS: Here, we describe the clinical findings of two Italian families affected by BrS and provide the functional characterization of two novel SCN5A mutations, the missense variant Pro1310Leu and the in-frame insertion Gly1687_Ile1688insGlyArg. RESULTS: Despite being clinically different, both patients have a family history of sudden cardiac death and had history of arrhythmic events. The Pro1310Leu mutation significantly reduced peak sodium current density without affecting channel membrane localization. Changes in the gating properties of expressed Pro1310Leu channel likely account for the loss-of-function phenotype. On the other hand, Gly1687_Ile1688insGlyArg channel, identified in a female patient, yielded a nearly undetectable sodium current. Following mexiletine incubation, the Gly1687_Ile1688insGlyArg channel showed detectable, albeit very small, currents and biophysical properties similar to those of the Nav1.5 wild-type channel. CONCLUSIONS: Overall, our results suggest that the degree of loss-of-function shown by the two Nav1.5 mutant channels correlates with the aggressive clinical phenotype of the two probands. This genotype-phenotype correlation is fundamental to set out appropriate therapeutical intervention.


Assuntos
Síndrome de Brugada/diagnóstico , Síndrome de Brugada/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Mutação , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Potenciais de Ação , Idoso , Idoso de 80 Anos ou mais , Alelos , Substituição de Aminoácidos , Eletrocardiografia , Feminino , Estudos de Associação Genética/métodos , Genótipo , Humanos , Itália , Masculino , Modelos Biológicos , Modelos Moleculares , Canal de Sódio Disparado por Voltagem NAV1.5/química , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Linhagem , Fenótipo , Conformação Proteica , Transporte Proteico
9.
Int J Mol Sci ; 21(4)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32069876

RESUMO

Among the severe side effects induced by cisplatin chemotherapy, muscle wasting is the most relevant one. This effect is a major cause for a clinical decline of cancer patients, since it is a negative predictor of treatment outcome and associated to increased mortality. However, despite its toxicity even at low doses, cisplatin remains the first-line therapy for several types of solid tumors. Thus, effective pharmacological treatments counteracting or minimizing cisplatin-induced muscle wasting are urgently needed. The dissection of the molecular pathways responsible for cisplatin-induced muscle dysfunction gives the possibility to identify novel promising therapeutic targets. In this context, the use of animal model of cisplatin-induced cachexia is very useful. Here, we report an update of the most relevant researches on the mechanisms underlying cisplatin-induced muscle wasting and on the most promising potential therapeutic options to preserve muscle mass and function.


Assuntos
Caquexia/genética , Grelina/genética , Atrofia Muscular/genética , Neoplasias/tratamento farmacológico , Animais , Peso Corporal/efeitos dos fármacos , Caquexia/induzido quimicamente , Caquexia/patologia , Cisplatino/efeitos adversos , Cisplatino/uso terapêutico , Modelos Animais de Doenças , Hormônio do Crescimento/genética , Humanos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/patologia , Neoplasias/complicações , Neoplasias/genética
10.
Int J Mol Sci ; 21(8)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331416

RESUMO

Kv1.1 belongs to the Shaker subfamily of voltage-gated potassium channels and acts as a critical regulator of neuronal excitability in the central and peripheral nervous systems. KCNA1 is the only gene that has been associated with episodic ataxia type 1 (EA1), an autosomal dominant disorder characterized by ataxia and myokymia and for which different and variable phenotypes have now been reported. The iterative characterization of channel defects at the molecular, network, and organismal levels contributed to elucidating the functional consequences of KCNA1 mutations and to demonstrate that ataxic attacks and neuromyotonia result from cerebellum and motor nerve alterations. Dysfunctions of the Kv1.1 channel have been also associated with epilepsy and kcna1 knock-out mouse is considered a model of sudden unexpected death in epilepsy. The tissue-specific association of Kv1.1 with other Kv1 members, auxiliary and interacting subunits amplifies Kv1.1 physiological roles and expands the pathogenesis of Kv1.1-associated diseases. In line with the current knowledge, Kv1.1 has been proposed as a novel and promising target for the treatment of brain disorders characterized by hyperexcitability, in the attempt to overcome limited response and side effects of available therapies. This review recounts past and current studies clarifying the roles of Kv1.1 in and beyond the nervous system and its contribution to EA1 and seizure susceptibility as well as its wide pharmacological potential.


Assuntos
Canalopatias/etiologia , Canalopatias/terapia , Predisposição Genética para Doença , Canal de Potássio Kv1.1/genética , Mutação , Alelos , Animais , Canalopatias/diagnóstico , Canalopatias/metabolismo , Gerenciamento Clínico , Regulação da Expressão Gênica , Estudos de Associação Genética , Genótipo , Humanos , Ativação do Canal Iônico , Canal de Potássio Kv1.1/química , Canal de Potássio Kv1.1/metabolismo , Terapia de Alvo Molecular , Fenótipo , Relação Estrutura-Atividade
11.
FASEB J ; 32(2): 1025-1043, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29097503

RESUMO

Muscle fibers lacking dystrophin undergo a long-term alteration of Ca2+ homeostasis, partially caused by a leaky Ca2+ release ryanodine (RyR) channel. S48168/ARM210, an RyR calcium release channel stabilizer (a Rycal compound), is expected to enhance the rebinding of calstabin to the RyR channel complex and possibly alleviate the pathologic Ca2+ leakage in dystrophin-deficient skeletal and cardiac muscle. This study systematically investigated the effect of S48168/ARM210 on the phenotype of mdx mice by means of a first proof-of-concept, short (4 wk), phase 1 treatment, followed by a 12-wk treatment (phase 2) performed in parallel by 2 independent laboratories. The mdx mice were treated with S48168/ARM210 at two different concentrations (50 or 10 mg/kg/d) in their drinking water for 4 and 12 wk, respectively. The mice were subjected to treadmill sessions twice per week (12 m/min for 30 min) to unmask the mild disease. This testing was followed by in vivo forelimb and hindlimb grip strength and fatigability measurement, ex vivo extensor digitorum longus (EDL) and diaphragm (DIA) force contraction measurement and histologic and biochemical analysis. The treatments resulted in functional (grip strength, ex vivo force production in DIA and EDL muscles) as well as histologic improvement after 4 and 12 wk, with no adverse effects. Furthermore, levels of cellular biomarkers of calcium homeostasis increased. Therefore, these data suggest that S48168/ARM210 may be a safe therapeutic option, at the dose levels tested, for the treatment of Duchenne muscular dystrophy (DMD).-Capogrosso, R. F., Mantuano, P., Uaesoontrachoon, K., Cozzoli, A., Giustino, A., Dow, T., Srinivassane, S., Filipovic, M., Bell, C., Vandermeulen, J., Massari, A. M., De Bellis, M., Conte, E., Pierno, S., Camerino, G. M., Liantonio, A., Nagaraju, K., De Luca, A. Ryanodine channel complex stabilizer compound S48168/ARM210 as a disease modifier in dystrophin-deficient mdx mice: proof-of-concept study and independent validation of efficacy.


Assuntos
Agonistas dos Canais de Cálcio/farmacologia , Distrofina/deficiência , Força Muscular/efeitos dos fármacos , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/tratamento farmacológico , Miocárdio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/fisiopatologia
13.
Toxicol Appl Pharmacol ; 306: 36-46, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27377005

RESUMO

Statin-induced skeletal muscle damage in rats is associated to the reduction of the resting sarcolemmal chloride conductance (gCl) and ClC-1 chloride channel expression. These drugs also affect the ClC-1 regulation by increasing protein kinase C (PKC) activity, which phosphorylate and close the channel. Also the intracellular resting calcium (restCa) level is increased. Similar alterations are observed in skeletal muscles of aged rats, suggesting a higher risk of statin myotoxicity. To verify this hypothesis, we performed a 4-5-weeks atorvastatin treatment of 24-months-old rats to evaluate the ClC-1 channel function by the two-intracellular microelectrodes technique as well as transcript and protein expression of different genes sensitive to statins by quantitative real-time-PCR and western blot analysis. The restCa was measured using FURA-2 imaging, and histological analysis of muscle sections was performed. The results show a marked reduction of resting gCl, in agreement with the reduced ClC-1 mRNA and protein expression in atorvastatin-treated aged rats, with respect to treated adult animals. The observed changes in myocyte-enhancer factor-2 (MEF2) expression may be involved in ClC-1 expression changes. The activity of PKC was also increased and further modulate the gCl in treated aged rats. In parallel, a marked reduction of the expression of glycolytic and mitochondrial enzymes demonstrates an impairment of muscle metabolism. No worsening of restCa or histological features was found in statin-treated aged animals. These findings suggest that a strong reduction of gCl and alteration of muscle metabolism coupled to muscle atrophy may contribute to the increased risk of statin-induced myopathy in the elderly.


Assuntos
Envelhecimento/fisiologia , Atorvastatina/efeitos adversos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Atrofia Muscular/induzido quimicamente , Envelhecimento/metabolismo , Animais , Atorvastatina/sangue , Atorvastatina/farmacocinética , Cálcio/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Creatina Quinase/sangue , Inibidores de Hidroximetilglutaril-CoA Redutases/sangue , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacocinética , Fatores de Transcrição MEF2 , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/fisiologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Atrofia Muscular/fisiopatologia , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Ratos Wistar
14.
Biochim Biophys Acta ; 1838(10): 2484-91, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24863058

RESUMO

CLC-K chloride channels play a crucial role in kidney physiology and genetic mutations, affecting their function are responsible for severe renal salt loss in humans. Thus, compounds that selectively bind to CLC-Ka and/or CLC-Kb channels and modulate their activity may have a significant therapeutic potential. Here, we compare the biophysical and pharmacological behaviors of human CLC-K channels expressed either in HEK293 cells or in Xenopus oocytes and we show that CLC-K channel properties are greatly influenced by the biochemical environment surrounding the channels. Indeed, in HEK293 cells the potentiating effect of niflumic acid (NFA) on CLC-Ka/barttin and CLC-Kb/barttin channels seems to be absent while the blocking efficacy of niflumic acid and benzofuran derivatives observed in oocytes is preserved. The NFA block does not seem to involve the accessory subunit barttin on CLC-K1 channels. In addition, the sensitivity of CLC-Ks to external Ca(2+) is reduced in HEK293 cells. Based on our findings, we propose that mammalian cell lines are a suitable expression system for the pharmacological profiling of CLC-Ks.


Assuntos
Anti-Inflamatórios não Esteroides , Benzofuranos , Canais de Cloreto , Sistemas de Liberação de Medicamentos , Rim/metabolismo , Ácido Niflúmico , Oócitos/metabolismo , Animais , Anti-Inflamatórios não Esteroides/farmacocinética , Anti-Inflamatórios não Esteroides/farmacologia , Benzofuranos/farmacocinética , Benzofuranos/farmacologia , Canais de Cloreto/antagonistas & inibidores , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Células HEK293 , Humanos , Ácido Niflúmico/farmacocinética , Ácido Niflúmico/farmacologia , Oócitos/citologia , Especificidade da Espécie , Xenopus laevis
15.
Biochim Biophys Acta ; 1838(11): 2745-56, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25073071

RESUMO

CLC-K chloride channels and their subunit, barttin, are crucial for renal NaCl reabsorption and for inner ear endolymph production. Mutations in CLC-Kb and barttin cause Bartter syndrome. Here, we identified two adjacent residues, F256 and N257, that when mutated hugely alter in Xenopus oocytes CLC-Ka's biphasic response to niflumic acid, a drug belonging to the fenamate class, with F256A being potentiated 37-fold and N257A being potently blocked with a KD~1µM. These residues are localized in the same extracellular I-J loop which harbors a regulatory Ca(2+) binding site. This loop thus can represent an ideal and CLC-K specific target for extracellular ligands able to modulate channel activity. Furthermore, we demonstrated the involvement of the barttin subunit in the NFA potentiation. Indeed the F256A mutation confers onto CLC-K1 a transient potentiation induced by NFA which is found only when CLC-K1/F256A is co-expressed with barttin. Thus, in addition to the role of barttin in targeting and gating, the subunit participates in the pharmacological modulation of CLC-K channels and thus represents a further target for potential drugs.

16.
Am J Pathol ; 184(10): 2803-15, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25084345

RESUMO

Hypertension is often associated with skeletal muscle pathological conditions related to function and metabolism. The mechanisms underlying the development of these pathological conditions remain undefined. Because calcium homeostasis is a biomarker of muscle function, we assessed whether it is altered in hypertensive muscles. We measured resting intracellular calcium and store-operated calcium entry (SOCE) in fast- and slow-twitch muscle fibers from normotensive Wistar-Kyoto rats and spontaneously hypertensive rats (SHRs) by cytofluorimetric technique and determined the expression of SOCE gene machinery by real-time PCR. Hypertension caused a phenotype-dependent dysregulation of calcium homeostasis; the resting intracellular calcium of extensor digitorum longus and soleus muscles of SHRs were differently altered with respect to the related muscle of normotensive animals. In addition, soleus muscles of SHR showed reduced activity of the sarcoplasmic reticulum and decreased sarcolemmal calcium permeability at rest and after SOCE activation. Accordingly, we found an alteration of the expression levels of some SOCE components, such as stromal interaction molecule 1, calcium release-activated calcium modulator 1, and transient receptor potential canonical 1. The hypertension-induced alterations of calcium homeostasis in the soleus muscle of SHRs occurred with changes of some functional outcomes as excitability and resting chloride conductance. We provide suitable targets for therapeutic interventions aimed at counterbalancing muscle performance decline in hypertension, and propose the reported calcium-dependent parameters as indexes to predict how the antihypertensive drugs could influence muscle function.


Assuntos
Cálcio/metabolismo , Hipertensão/fisiopatologia , Fibras Musculares de Contração Lenta/metabolismo , Músculo Esquelético/metabolismo , Animais , Cafeína/metabolismo , Cálcio/análise , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Homeostase , Humanos , Masculino , Contração Muscular/fisiologia , Fibras Musculares de Contração Lenta/fisiologia , Músculo Esquelético/fisiologia , Fenótipo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
17.
Am J Physiol Cell Physiol ; 307(7): C634-47, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25080489

RESUMO

Angiotensin II (ANG II) plays a role in muscle wasting and remodeling; however, little evidence shows its direct effects on specific muscle functions. We presently investigated the acute in vitro effects of ANG II on resting ionic conductance and calcium homeostasis of mouse extensor digitorum longus (EDL) muscle fibers, based on previous findings that in vivo inhibition of ANG II counteracts the impairment of macroscopic ClC-1 chloride channel conductance (gCl) in the mdx mouse model of muscular dystrophy. By means of intracellular microelectrode recordings we found that ANG II reduced gCl in the nanomolar range and in a concentration-dependent manner (EC50 = 0.06 µM) meanwhile increasing potassium conductance (gK). Both effects were inhibited by the ANG II receptors type 1 (AT1)-receptor antagonist losartan and the protein kinase C inhibitor chelerythrine; no antagonism was observed with the AT2 antagonist PD123,319. The scavenger of reactive oxygen species (ROS) N-acetyl cysteine and the NADPH-oxidase (NOX) inhibitor apocynin also antagonized ANG II effects on resting ionic conductances; the ANG II-dependent gK increase was blocked by iberiotoxin, an inhibitor of calcium-activated potassium channels. ANG II also lowered the threshold for myofiber and muscle contraction. Both ANG II and the AT1 agonist L162,313 increased the intracellular calcium transients, measured by fura-2, with a two-step pattern. These latter effects were not observed in the presence of losartan and of the phospholipase C inhibitor U73122 and the in absence of extracellular calcium, disclosing a Gq-mediated calcium entry mechanism. The data show for the first time that the AT1-mediated ANG II pathway, also involving NOX and ROS, directly modulates ion channels and calcium homeostasis in adult myofibers.


Assuntos
Angiotensina II/farmacologia , Cálcio/metabolismo , Cloretos/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , NADPH Oxidases/metabolismo , Potássio/metabolismo , Receptor Tipo 1 de Angiotensina/agonistas , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Acoplamento Excitação-Contração/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Homeostase , Masculino , Potenciais da Membrana , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/enzimologia , NADPH Oxidases/antagonistas & inibidores , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Fatores de Tempo
18.
Pflugers Arch ; 466(12): 2215-28, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24643479

RESUMO

In skeletal muscle, the resting chloride conductance (gCl), due to the ClC-1 chloride channel, controls the sarcolemma electrical stability. Indeed, loss-of-function mutations in ClC-1 gene are responsible of myotonia congenita. The ClC-1 channel can be phosphorylated and inactivated by protein kinases C (PKC), but the relative contribution of each PKC isoforms is unknown. Here, we investigated on the role of PKCθ in the regulation of ClC-1 channel expression and activity in fast- and slow-twitch muscles of mouse models lacking PKCθ. Electrophysiological studies showed an increase of gCl in the PKCθ-null mice with respect to wild type. Muscle excitability was reduced accordingly. However, the expression of the ClC-1 channel, evaluated by qRT-PCR, was not modified in PKCθ-null muscles suggesting that PKCθ affects the ClC-1 activity. Pharmacological studies demonstrated that although PKCθ appreciably modulates gCl, other isoforms are still active and concur to this role. The modification of gCl in PKCθ-null muscles has caused adaptation of the expression of phenotype-specific genes, such as calcineurin and myocyte enhancer factor-2, supporting the role of PKCθ also in the settings of muscle phenotype. Importantly, the lack of PKCθ has prevented the aging-related reduction of gCl, suggesting that its modulation may represent a new strategy to contrast the aging process.


Assuntos
Potenciais de Ação , Canais de Cloreto/metabolismo , Isoenzimas/metabolismo , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Fenótipo , Proteína Quinase C/metabolismo , Animais , Calcineurina/genética , Calcineurina/metabolismo , Cloretos/metabolismo , Isoenzimas/genética , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Camundongos , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Lenta/fisiologia , Proteína Quinase C/genética , Proteína Quinase C-theta
19.
Front Pharmacol ; 15: 1393746, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962308

RESUMO

Introduction: During aging, sarcopenia and decline in physiological processes lead to partial loss of muscle strength, atrophy, and increased fatigability. Muscle changes may be related to a reduced intake of essential amino acids playing a role in proteostasis. We have recently shown that branched-chain amino acid (BCAA) supplements improve atrophy and weakness in models of muscle disuse and aging. Considering the key roles that the alteration of Ca2+-related homeostasis and store-operated calcium entry (SOCE) play in several muscle dysfunctions, this study has been aimed at gaining insight into the potential ability of BCAA-based dietary formulations in aged mice on various players of Ca2+ dyshomeostasis. Methods: Seventeen-month-old male C57BL/6J mice received a 12-week supplementation with BCAAs alone or boosted with two equivalents of L-alanine (2-Ala) or with dipeptide L-alanyl-L-alanine (Di-Ala) in drinking water. Outcomes were evaluated on ex vivo skeletal muscles indices vs. adult 3-month-old male C57BL/6J mice. Results: Ca2+ imaging confirmed a decrease in SOCE and an increase of resting Ca2+ concentration in aged vs. adult mice without alteration in the canonical components of SOCE. Aged muscles vs. adult muscles were characterized by a decrease in the expression of ryanodine receptor 1 (RyR1), the Sarco-Endoplasmic Reticulum Calcium ATPase (SERCA) pump, and sarcalumenin together with an alteration of the expression of mitsugumin 29 and mitsugumin 53, two recently recognized players in the SOCE mechanism. BCAAs, particularly the formulation BCAAs+2-Ala, were able to ameliorate all these alterations. Discussion: These results provide evidence that Ca2+ homeostasis dysfunction plays a role in the functional deficit observed in aged muscle and supports the interest of dietary BCAA supplementation in counteracting sarcopenia-related SOCE dysregulation.

20.
Eur J Pharmacol ; 978: 176794, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968980

RESUMO

Heart failure (HF) remains a huge medical burden worldwide, with aging representing a major risk factor. Here, we report the effects of sacubitril/valsartan, an approved drug for HF with reduced EF, in an experimental model of aging-related HF with preserved ejection fraction (HFpEF). Eighteen-month-old female Fisher 344 rats were treated for 12 weeks with sacubitril/valsartan (60 mg/kg/day) or with valsartan (30 mg/kg/day). Three-month-old rats were used as control. No differential action of sacubitril/valsartan versus valsartan alone, either positive or negative, was observed. The positive effects of both sacubitril/valsartan and valsartan on cardiac hypertrophy was evidenced by a significant reduction of wall thickness and myocyte cross-sectional area. Contrarily, myocardial fibrosis in aging heart was not reduced by any treatment. Doppler echocardiography and left ventricular catheterization evidenced diastolic dysfunction in untreated and treated old rats. In aging rats, both classical and non-classical renin-angiotensin-aldosterone system (RAAS) were modulated. In particular, with respect to untreated animals, both sacubitril/valsartan and valsartan showed a partial restoration of cardioprotective non-classical RAAS. In conclusion, this study evidenced the favorable effects, by both treatments, on age-related cardiac hypertrophy. The attenuation of cardiomyocyte size and hypertrophic response may be linked to a shift towards cardioprotective RAAS signaling. However, diastolic dysfunction and cardiac fibrosis persisted despite of treatment and were accompanied by myocardial inflammation, endothelial activation, and oxidative stress.


Assuntos
Envelhecimento , Aminobutiratos , Compostos de Bifenilo , Combinação de Medicamentos , Insuficiência Cardíaca , Ratos Endogâmicos F344 , Tetrazóis , Valsartana , Animais , Aminobutiratos/farmacologia , Aminobutiratos/uso terapêutico , Compostos de Bifenilo/farmacologia , Valsartana/farmacologia , Valsartana/uso terapêutico , Envelhecimento/efeitos dos fármacos , Envelhecimento/patologia , Feminino , Tetrazóis/farmacologia , Tetrazóis/uso terapêutico , Ratos , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Sistema Renina-Angiotensina/efeitos dos fármacos , Fibrose , Estresse Oxidativo/efeitos dos fármacos , Antagonistas de Receptores de Angiotensina/farmacologia , Antagonistas de Receptores de Angiotensina/uso terapêutico , Volume Sistólico/efeitos dos fármacos , Modelos Animais de Doenças , Neprilisina/antagonistas & inibidores , Neprilisina/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA