Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 112(51): 15630-5, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26644570

RESUMO

The regulatory mechanisms underlying the uptake and utilization of multiple types of carbohydrates in actinomycetes remain poorly understood. In this study, we show that GlnR (central regulator of nitrogen metabolism) serves as a universal regulator of nitrogen metabolism and plays an important, previously unknown role in controlling the transport of non-phosphotransferase-system (PTS) carbon sources in actinomycetes. It was observed that GlnR can directly interact with the promoters of most (13 of 20) carbohydrate ATP-binding cassette (ABC) transporter loci and can activate the transcription of these genes in response to nitrogen availability in industrial, erythromycin-producing Saccharopolyspora erythraea. Deletion of the glnR gene resulted in severe growth retardation under the culture conditions used, with select ABC-transported carbohydrates (maltose, sorbitol, mannitol, cellobiose, trehalose, or mannose) used as the sole carbon source. Furthermore, we found that GlnR-mediated regulation of carbohydrate transport was highly conserved in actinomycetes. These results demonstrate that GlnR serves a role beyond nitrogen metabolism, mediating critical functions in carbon metabolism and crosstalk of nitrogen- and carbon-metabolism pathways in response to the nutritional states of cells. These findings provide insights into the molecular regulation of transport and metabolism of non-PTS carbohydrates and reveal potential applications for the cofermentation of biomass-derived sugars in the production of biofuels and bio-based chemicals.


Assuntos
Actinobacteria/metabolismo , Carbono/metabolismo , Nitrogênio/metabolismo , Proteínas PII Reguladoras de Nitrogênio/fisiologia , Transportadores de Cassetes de Ligação de ATP/fisiologia , Maltose/metabolismo , Saccharopolyspora/metabolismo
2.
Appl Environ Microbiol ; 82(23): 6819-6830, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27637875

RESUMO

Starch-degrading enzymes hydrolyze starch- and starch-derived oligosaccharides to yield glucose. We investigated the transcriptional regulation of genes encoding starch-degrading enzymes in the industrial actinobacterium Saccharopolyspora erythraea We observed that most genes encoding amylolytic enzymes (one α-amylase, one glucoamylase, and four α-glucosidases) were regulated by GlnR and PhoP, which are global regulators of nitrogen and phosphate metabolism, respectively. Electrophoretic mobility shift assays and reverse transcription-PCR (RT-PCR) analyses demonstrated that GlnR and PhoP directly interact with their promoter regions and collaboratively or competitively activate their transcription. Deletion of glnR caused poor growth on starch, maltodextrin, and maltose, whereas overexpression of glnR and phoP increased the total activity of α-glucosidase, resulting in enhanced carbohydrate utilization. Additionally, transcript levels of amylolytic genes and total glucosidase activity were induced in response to nitrogen and phosphate limitation. Furthermore, regulatory effects of GlnR and PhoP on starch-degrading enzymes were conserved in Streptomyces coelicolor A3(2). These results demonstrate that GlnR and PhoP are involved in polysaccharide degradation by mediating the interplay among carbon, nitrogen, and phosphate metabolism in response to cellular nutritional states. Our study reveals a novel regulatory mechanism underlying carbohydrate metabolism, and suggests new possibilities for designing genetic engineering approaches to improve the rate of utilization of starch in actinobacteria.IMPORTANCE The development of efficient strategies for utilization of biomass-derived sugars, such as starch and cellulose, remains a major technical challenge due to the weak activity of associated enzymes. Here, we found that GlnR and PhoP directly regulate the transcription of genes encoding amylolytic enzymes and present insights into the regulatory mechanisms of degradation and utilization of starch in actinobacteria. Two nutrient-sensing regulators may play important roles in creating a direct association between nitrogen/phosphate metabolisms and carbohydrate utilization, as well as modulate the C:N:P balance in response to cellular nutritional states. These findings highlight the interesting possibilities for designing genetic engineering approaches and optimizing the fermentation process to improve the utilization efficiency of sugars in actinobacteria via overexpression of the glnR and phoP genes and nutrient signal stimulation.

3.
Mol Microbiol ; 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25294017

RESUMO

Saccharopolyspora erythraea has three citrate synthases encoded by gltA-2, citA, and citA4. Here, we characterized and identified the expression and regulatory properties of these synthases. Three pleiotropic global regulatory proteins of S. erythraea - CRP, GlnR, and DasR - are involved in carbon metabolism, nitrogen metabolism, and amino-sugar (chitin and GlcNAc) metabolism. Using electrophoretic mobility shift assays (EMSAs), we identified these regulators as proteins that bind directly to the promoter regions of all citrate synthase genes (gltA-2, citA, and citA4). Footprinting assays indicated the exact protect sequences of CRP, GlnR, and DasR on the promoter region of gltA-2, revealing binding competition between GlnR and DasR. Moreover, by comparing the transcription levels of citrate synthase genes between parental and glnR mutant or dasR mutant strains, or by comparing the transcription response of citrate synthases under various nutrient conditions, we found that GlnR and DasR negatively regulated citA and citA4 transcription but had no regulatory effects on the gltA-2 gene. Although no CRP mutant was available, the results indicated that CRP was a cAMP-binding receptor affecting gltA-2 transcription when the intracellular cAMP concentration increased. Thus, an overall model of CS regulation by C and/or N metabolism regulators and cAMP receptor protein was proposed.

4.
Appl Microbiol Biotechnol ; 99(23): 10215-24, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26272095

RESUMO

The GntR-family transcription regulator, DasR, was previously identified as pleiotropic, controlling the primary amino sugar N-acetylglucosamine (GlcNAc) and chitin metabolism in Saccharopolyspora erythraea and Streptomyces coelicolor. Due to the remarkable regulatory impact of DasR on antibiotic production and development in the model strain of S. coelicolor, we here identified and characterized the role of DasR to secondary metabolite production and morphological development in industrial erythromycin-producing S. erythraea. The physiological studies have shown that a constructed deletion of dasR in S. erythraea resulted in antibiotic, pigment, and aerial hyphae production deficit in a nutrient-rich condition. DNA microarray assay, combined with quantitative real-time reverse transcription PCR (qRT-PCR), confirmed these results by showing the downregulation of the genes relating to secondary metabolite production in the dasR null mutant. Notably, electrophoretic mobility shift assays (EMSA) showed DasR as being the first identified regulator that directly regulates the pigment biosynthesis rpp gene cluster. In addition, further studies indicated that GlcNAc, the major nutrient signal of DasR-responsed regulation, blocked secondary metabolite production and morphological development. The effects of GlcNAc were shown to be caused by DasR mediation. These findings demonstrated that DasR is an important pleiotropic regulator for both secondary metabolism and morphological development in S. erythraea, providing new insights for the genetic engineering of S. erythraea with increased erythromycin production.


Assuntos
Antibacterianos/biossíntese , Genes Reguladores , Pigmentos Biológicos/biossíntese , Saccharopolyspora/genética , Saccharopolyspora/metabolismo , Acetilglucosamina/metabolismo , DNA Bacteriano/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Eritromicina/biossíntese , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Análise em Microsséries , Ligação Proteica , Reação em Cadeia da Polimerase em Tempo Real , Saccharopolyspora/crescimento & desenvolvimento
5.
Appl Microbiol Biotechnol ; 98(18): 7935-48, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24931311

RESUMO

Nitrogen source sensing, uptake, and assimilation are central for growth and development of microorganisms which requires the participation of a global control of nitrogen metabolism-associated genes at the transcriptional level. In soil-dwelling antibiotic-producing actinomycetes, this role is played by GlnR, an OmpR family regulator. In this work, we demonstrate that SACE_7101 is the ortholog of actinomycetes' GlnR global regulators in the erythromycin producer Saccharopolyspora erythraea. Indeed, the chromosomal deletion of SACE_7101 severely affects the viability of S. erythraea when inoculated in minimal media supplemented with NaNO3, NaNO2, NH4Cl, glutamine, or glutamate as sole nitrogen source. Combination of in silico prediction of cis-acting elements, subsequent in vitro (through gel shift assays) and in vivo (real-time reverse transcription polymerase chain reaction) validations of the predicted target genes revealed a very large GlnR regulon aimed at adapting the nitrogen metabolism of S. erythraea. Indeed, enzymes/proteins involved in (i) uptake and assimilation of ammonium, (ii) transport and utilization of urea, (iii) nitrite/nitrate, (iv) glutamate/glutamine, (v) arginine metabolism, (vi) nitric oxide biosynthesis, and (vii) signal transduction associated with the nitrogen source supplied have at least one paralog gene which expression is controlled by GlnR. Our work highlights a GlnR-binding site consensus sequence (t/gna/cAC-n6-GaAAc) which is similar although not identical to the consensus sequences proposed for other actinomycetes. Finally, we discuss the distinct and common features of the GlnR-mediated transcriptional control of nitrogen metabolism between S. erythraea and the model organism Streptomyces coelicolor.


Assuntos
Actinobacteria/metabolismo , Proteínas de Bactérias/metabolismo , Nitrogênio/metabolismo , Actinobacteria/efeitos dos fármacos , Cloreto de Amônio/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Ácido Glutâmico/farmacologia , Glutamina/farmacologia , Nitratos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA