Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(49): e2304348, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37621035

RESUMO

Tunnel oxide passivating contact (TOPCon) solar cells (SCs) as one of the most competitive crystalline silicon (c-Si) technologies for the TW-scaled photovoltaic (PV) market require higher passivation performance to further improve their device efficiencies. Here, the successful construction of a double-layered polycrystalline silicon (poly-Si) TOPCon structure is reported using an in situ nitrogen (N)-doped poly-Si covered by a normal poly-Si, which achieves excellent passivation and contact properties simultaneously. The new design exhibits the highest implied open-circuit voltage of 755 mV and the lowest single-sided recombination current density (J0 ) of ≈0.7 fA cm⁻2 for a TOPCon structure and a low contact resistivity of less than 5 mΩ·cm2 , resulting in a high selectivity factor of ≈16. The mechanisms of passivation improvement are disclosed, which suggest that the introduction of N atoms into poly-Si restrains H overflow by forming stronger Si-N and N-H bonds, reduces interfacial defects, and induces favorable energy bending. Proof-of-concept TOPCon SCs with such a design receive a remarkable certified efficiency of 25.53%.

2.
Nanotechnology ; 34(45)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37527633

RESUMO

In preparing tunnel oxygen passivation contact (TOPCon) solar cells, the metallization process often causes damage to passivation performance. Aiming to solve the issue, we investigated the advantages of the novel polysilicon, i.e. the carbon (C) or nitrogen (N) doped polysilicon, in resisting metallization damage. Our study reveals that C- or N-doped polysilicon does mitigate the passivation damage caused by the physical-vapor deposition metallization processes, i.e. the decrease in implied open-circuit voltage (iVoc) and the increase in recombination current (J0) are both suppressed. For the novel polysilicon samples suffered metallization, the decrease ofiVocwas only ∼-1 mV, and the increase ofJ0< 1 fA cm-2; in contrast, the decrease ofiVocof the standard polysilicon samples was -7 mV, and the increase ofJ0was ∼6 fA cm-2. In addition, we also explored the difference between the finger-metal and the full-metal metallization, showing that the finger-metal has less passivation damage due to the smaller contact area. However, the free energy loss analysis indicates that the advantage of the novel polysilicon in resisting metallization damage is overshadowed by the disadvantage of the higher contact resistivity when finger-metal electrodes are used. Numerical simulations prove that the efficiency of the solar cell with novel polysilicon still shows >0.2% absolute efficiency higher than that with the standard polysilicon, reaching 26% when full-metal electrodes by thermal evaporation.

3.
Opt Express ; 25(9): 10464-10472, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28468418

RESUMO

Surface-texture with silicon (Si) nanopyramid arrays has been considered as a promising choice for extremely high performance solar cells due to their excellent anti-reflective effects and inherent low parasitic surface areas. However, the current techniques of fabricating Si nanopyramid arrays are always complicated and cost-ineffective. Here, a high throughput nanosphere patterning method is developed to form periodic upright nanopyramid (UNP) arrays in wafer-scale. A direct comparison with the state-of-the-art texture of random pyramids is demonstrated in optical and electronic properties. In combination with the antireflection effect of a SiNx coating layer, the periodic UNP arrays help to provide a remarkable improvement in short-wavelength response over the random pyramids, attributing to a short-current density gain of 1.35 mA/cm2. The advanced texture of periodic UNP arrays provided in this work shows a huge potential to be integrated into the mass production of high-efficiency Si solar cells.

4.
Nanotechnology ; 28(47): 474001, 2017 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-29098987

RESUMO

2D metallic arrays with binary nanostructures derived from a nanosphere lithography (NSL) method have been rarely reported. Here, we demonstrate a novel NSL strategy to fabricate highly ordered 2D gold arrays with disc-in-hole binary (DIHB) nanostructures in large scale by employing a sacrificing layer combined with a three-step lift-off process. The structural parameters of the resultant DIHB arrays, such as periodicity, hole diameter, disc diameter and thicknesses can be facilely controlled by tuning the nanospheres size, etching condition, deposition angle and duration, respectively. Due to the intimate interactions between two subcomponents, the DIHB arrays exhibit both an extraordinary high surface-enhanced Raman scattering enhancement factor up to 5 × 108 and a low sheet resistance down to 1.7 Ω/sq. Moreover, the DIHB array can also be used as a metal catalyzed chemical etching catalytic pattern to create vertically-aligned Si nano-tube arrays for anti-reflectance application. This strategy provides a universal route for synthesizing other diverse binary nanostructures with controlled morphology, and thus expands the applications of the NSL to prepare ordered nanostructures with multi-function.

5.
Nat Commun ; 15(1): 8453, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39349430

RESUMO

Tunnel oxide passivated contact (TOPCon) silicon solar cells are rising as a competitive photovoltaic technology, seamlessly blending high efficiency with cost-effectiveness and mass production capabilities. However, the numerous defects from the fragile silicon oxide/c-Si interface and the low field-effect passivation due to the inadequate boron in-diffusion in p-type polycrystalline silicon (poly-Si) passivated contact reduce their open-circuit voltages (VOCs), impeding their widespread application in the promising perovskite/silicon tandem solar cells (TSCs) that hold a potential to break 30% module efficiency. To address this, we have developed a highly passivated p-type TOPCon structure by optimizing the oxidation conditions, boron in-diffusion, and aluminium oxide hydrogenation, thus pronouncedly improving the implied VOC (iVOC) of symmetric samples with p-type TOPCon structures on both sides to 715 mV and the VOC of completed double-sided TOPCon bottom cells to 710 mV. Consequently, integrating with perovskite top cells, our proof of concept of 1 cm2 n-i-p perovskite/silicon TSCs exhibit VOCs exceeding 1.9 V and a high efficiency of 28.20% (certified 27.3%), which paves a way for TOPCon cells in the commercialization of future tandems.

6.
ACS Nano ; 9(6): 6522-31, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26047260

RESUMO

Hybrid silicon/polymer solar cells promise to be an economically feasible alternative energy solution for various applications if ultrathin flexible crystalline silicon (c-Si) substrates are used. However, utilization of ultrathin c-Si encounters problems in light harvesting and electronic losses at surfaces, which severely degrade the performance of solar cells. Here, we developed a metal-assisted chemical etching method to deliver front-side surface texturing of hierarchically bowl-like nanopores on 20 µm c-Si, enabling an omnidirectional light harvesting over the entire solar spectrum as well as an enlarged contact area with the polymer. In addition, a back surface field was introduced on the back side of the thin c-Si to minimize the series resistance losses as well as to suppress the surface recombination by the built high-low junction. Through these improvements, a power conversion efficiency (PCE) up to 13.6% was achieved under an air mass 1.5 G irradiation for silicon/organic hybrid solar cells with the c-Si thickness of only about 20 µm. This PCE is as high as the record currently reported in hybrid solar cells constructed from bulk c-Si, suggesting a design rule for efficient silicon/organic solar cells with thinner absorbers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA