Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10468, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714870

RESUMO

Inflammatory age (iAge) is a vital concept for understanding the intricate interplay between chronic inflammation and aging in the context of cancer. However, the importance of iAge-clock-related genes (iAge-CRGs) across cancers remains unexplored. This study aimed to explore the mechanisms and applications of these genes across diverse cancer types. We analyzed profiling data from over 10,000 individuals, covering 33 cancer types, 750 small molecule drugs, and 24 immune cell types. We focused on DCBLD2's function at the single-cell level and computed an iAge-CRG score using GSVA. This score was correlated with cancer pathways, immune infiltration, and survival. A signature was then derived using univariate Cox and LASSO regression, followed by ROC curve analysis, nomogram construction, decision curve analysis, and immunocytochemistry. Our comprehensive analysis revealed epigenetic, genomic, and immunogenomic alterations in iAge-CRGs, especially DCBLD2, leading to abnormal expression. Aberrant DCBLD2 expression strongly correlated with cancer-associated fibroblast infiltration and prognosis in multiple cancers. Based on GSVA results, we developed a risk model using five iAge-CRGs, which proved to be an independent prognostic index for uveal melanoma (UVM) patients. We also systematically evaluated the correlation between the iAge-related signature risk score and immune cell infiltration. iAge-CRGs, particularly DCBLD2, emerge as potential targets for enhancing immunotherapy outcomes. The strong correlation between abnormal DCBLD2 expression, cancer-associated fibroblast infiltration, and patient survival across various cancers underscores their significance. Our five-gene risk signature offers an independent prognostic tool for UVM patients, highlighting the crucial role of these genes in suppressing the immune response in UVM.Kindly check and confirm whether the corresponding affiliation is correctly identified.I identified the affiliation is correctly.thank you.Per style, a structured abstract is not allowed so we have changed the structured abstract to an unstructured abstract. Please check and confirm.I confirm the abstract is correctly ,thank you.


Assuntos
Biomarcadores Tumorais , Neoplasias , Humanos , Prognóstico , Neoplasias/genética , Neoplasias/imunologia , Biomarcadores Tumorais/genética , Inflamação/genética , Regulação Neoplásica da Expressão Gênica , Perfilação da Expressão Gênica , Envelhecimento/genética , Envelhecimento/imunologia , Multiômica
2.
Behav Brain Res ; 464: 114927, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38428645

RESUMO

BACKGROUND: Psychiatric disorders, such as schizophrenia (SCZ), major depressive (MDD), and bipolar disorder (BD) have a profound impact on millions of individuals worldwide. The critical step toward developing effective preventive and treatment strategies lies in comprehending the causal mechanisms behind these diseases and identifying modifiable risk factors associated with them. METHODS: In this study, we conducted a 2-sample Mendelian randomization analysis to explore the potential links between chickenpox(varicella-zoster virus infection) and three major psychiatric disorders(SCZ, MDD, BD). RESULTS: In our MR study, among the three major psychiatric disorders, chickenpox was shown to be causally related to BD, indicating that infection with chickenpox may increase the risk of developing BD (IVW: OR = 1.064, 95% CI =1.025-1.104, P=0.001; RAPS: OR=1.066, 95% CI=1.024-1.110, P=0.002), while there was no causal relationship between SCZ and MDD. Similar estimated causal effects were observed consistently across the various MR models. The robustness of the identified causal relationship between chickenpox and BD holds true regardless of the statistical methods employed, as confirmed by extensive sensitivity analyses that address violations in model assumptions. The MR-Egger regression test failed to reveal any signs of directional pleiotropy (intercept = -0.042, standard error (SE) = 0.029, p = 0.236). Similarly, the MR-PRESSO analysis revealed no evidence of directional pleiotropy or outliers among the chickenpox-related instrumental variables (global test p = 0.653). Furthermore, a leave-one-out sensitivity analysis yielded consistent results, further underscoring the credibility and stability of the causal relationship. CONCLUSIONS: Our findings provide compelling evidence of a causal effect of chickenpox on the risk of BD. To gain a more comprehensive understanding of this association and its underlying mechanisms, additional research is needed. Such investigations are pivotal in identifying effective interventions for promoting BD prevention.


Assuntos
Varicela , Transtorno Depressivo Maior , Transtornos Mentais , Humanos , Herpesvirus Humano 3/genética , Varicela/epidemiologia , Transtorno Depressivo Maior/genética , Análise da Randomização Mendeliana , Estudo de Associação Genômica Ampla
3.
Int Immunopharmacol ; 139: 112712, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39032476

RESUMO

Ischemic stroke (IS) is a debilitating neurological disorder with limited treatment options. Extracellular vesicles (EVs) have emerged as crucial lipid bilayer particles derived from various cell types that facilitate intercellular communication and enable the exchange of proteins, lipids, and genetic material. Microglia are resident brain cells that play a crucial role in brain development, maintenance of neuronal networks, and injury repair. They secrete numerous extracellular vesicles in different states. Recent evidence indicates that microglia-derived extracellular vesicles (M-EVs) actively participate in mediating various biological processes, such as neuroprotection and neurorepair, in stroke, making them an excellent therapeutic approach for treating this condition. This review comprehensively summarizes the latest research on M-EVs in stroke and explores their potential as novel therapeutic targets for this disorder. Additionally, it provides an overview of the effects and functions of M-EVs on stroke recovery to facilitate the development of clinically relevant therapies for IS.


Assuntos
Vesículas Extracelulares , AVC Isquêmico , Microglia , Humanos , Microglia/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Animais , AVC Isquêmico/terapia , AVC Isquêmico/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia
4.
J Med Chem ; 67(12): 9976-9990, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38886162

RESUMO

This study describes the design and synthesis of five TF-based cancer vaccine candidates using a lipid A mimetic as the carrier and a built-in adjuvant. All synthesized conjugates elicited robust and consistent TF-specific immune responses in mice without external adjuvants. Immunological studies subsequently conducted in wild-type and TLR4 knockout C57BL/6 mice demonstrated that the activation of TLR4 was the main reason that the synthesized lipid A mimetics increased the TF-specific immune responses. All antisera induced by these conjugates can specifically recognize, bind to, and induce the lysis of TF-positive cancer cells. Moreover, representative conjugates 2 and 3 could effectively reduce the growth of tumors and prolong the survival time of mice in vivo, and the efficacies were better than glycoprotein TF-CRM197 with alum adjuvant. Lipid A mimetics could therefore be a promising platform for the development of new carbohydrate-based vaccine carriers with self-adjuvanting properties for the treatment of cancer.


Assuntos
Adjuvantes Imunológicos , Vacinas Anticâncer , Desenho de Fármacos , Lipídeo A , Camundongos Endogâmicos C57BL , Animais , Lipídeo A/análogos & derivados , Lipídeo A/química , Lipídeo A/farmacologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/farmacologia , Vacinas Anticâncer/síntese química , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/síntese química , Adjuvantes Imunológicos/química , Camundongos , Camundongos Knockout , Humanos , Feminino , Receptor 4 Toll-Like/metabolismo , Linhagem Celular Tumoral
5.
Exp Gerontol ; 193: 112464, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38797288

RESUMO

BACKGROUND: Vascular dementia (VaD), the second most prevalent type of dementia, lacks a well-defined cause and effective treatment. Our objective was to utilize bioinformatics analysis to discover the fundamental disease-causing genes and pathological mechanisms in individuals diagnosed with VaD. METHODS: To identify potential pathogenic genes associated with VaD, we conducted weighted gene co-expression network analysis (WGCNA), differential expression analysis, and protein-protein interaction (PPI) analysis. The exploration of potential biological mechanisms involved the utilization of Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis. Moreover, a bilateral common carotid artery stenosis (BCAS) mouse model of VaD was established, and the expression of the hub gene, its relationship with cognitive function and its potential pathogenic mechanism were verified by cognitive behavior tests, cerebral blood flow measurement, Western blotting, and immunofluorescence experiments. RESULTS: This study identified 293 DEGs from the brain cortex of VaD patients and healthy controls, among these genes, the Toll-like receptor 2 (TLR2) gene was identified as hub gene, and it was associated with the apoptosis-related pathway PI3K/AKT.The BCAS model demonstrated that the use of TLR2 inhibitors greatly enhanced the cognitive function of the mice (p < 0.05). Additionally, there was a notable decrease in the number of apoptotic cells in the brain cortex of the mice (p < 0.01). Moreover, significant alterations in the levels of proteins related to the PI3K/AKT pathway and cleaved-caspase3 proteins were detected (p < 0.05). CONCLUSIONS: TLR2 plays a role in the pathophysiology of VaD by enhancing the neuronal apoptotic pathway, suggesting it could be a promising therapeutic target.


Assuntos
Apoptose , Biologia Computacional , Demência Vascular , Modelos Animais de Doenças , Neurônios , Receptor 2 Toll-Like , Demência Vascular/metabolismo , Demência Vascular/genética , Demência Vascular/patologia , Animais , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Humanos , Camundongos , Masculino , Neurônios/metabolismo , Mapas de Interação de Proteínas , Camundongos Endogâmicos C57BL , Redes Reguladoras de Genes , Feminino , Estenose das Carótidas/metabolismo , Estenose das Carótidas/patologia , Idoso , Proteínas Proto-Oncogênicas c-akt/metabolismo
6.
Int Immunopharmacol ; 133: 112071, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38636374

RESUMO

Microglia play a pivotal role in the neuroinflammatory response after brain injury, and their proliferation is dependent on colony-stimulating factors. In the present study, we investigated the effect of inhibiting microglia proliferation on neurological damage post intracerebral hemorrhage (ICH) in a mouse model, an aspect that has never been studied before. Using a colony-stimulating factor-1 receptor antagonist (GW2580), we observed that inhibition of microglia proliferation significantly ameliorated neurobehavioral deficits, attenuated cerebral edema, and reduced hematoma volume after ICH. This intervention was associated with a decrease in pro-inflammatory factors in microglia and an increased infiltration of peripheral regulatory CD8 + CD122+ T cells into the injured brain tissue. The CXCR3/CXCL10 axis is the mechanism of brain homing of regulatory CD8 + CD122+ T cells, and the high expression of IL-10 is the hallmark of their synergistic anti-inflammatory effect with microglia. And activated astrocytes around the insult site are a prominent source of CXCL10. Thus, inhibition of microglial proliferation offers a new perspective for clinical translation. The cross-talk between multiple cells involved in the regulation of the inflammatory response highlights the comprehensive nature of neuroimmunomodulation.


Assuntos
Encéfalo , Linfócitos T CD8-Positivos , Hemorragia Cerebral , Microglia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos , Animais , Masculino , Camundongos , Anisóis , Encéfalo/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/imunologia , Quimiocina CXCL10/metabolismo , Modelos Animais de Doenças , Interleucina-10/metabolismo , Subunidade beta de Receptor de Interleucina-2/metabolismo , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Pirimidinas , Receptores CXCR3/metabolismo , Receptores CXCR3/antagonistas & inibidores , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo
7.
Aging Dis ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38270117

RESUMO

Aging has emerged at the forefront of scientific research due to the growing social and economic costs associated with the growing aging global population. The defining features of aging involve a variety of molecular processes and cellular systems, which are interconnected and collaboratively contribute to the aging process. Herein, we analyze how telomere dysfunction potentially amplifies or accelerates the molecular and biochemical mechanisms underpinning each feature of aging and contributes to the emergence of age-associated illnesses, including cancer and neurodegeneration, via the perspective of telomere biology. Furthermore, the recently identified novel mechanistic actions for telomere maintenance offer a fresh viewpoint and approach to the management of telomeres and associated disorders. Telomeres and the defining features of aging are intimately related, which has implications for therapeutic and preventive approaches to slow aging and reduce the prevalence of age-related disorders.

9.
Front Nutr ; 11: 1403863, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711531
10.
Neural Regen Res ; 20(2): 518-532, 2025 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38819064

RESUMO

JOURNAL/nrgr/04.03/01300535-202502000-00029/figure1/v/2024-05-28T214302Z/r/image-tiff Cerebral edema caused by blood-brain barrier injury after intracerebral hemorrhage is an important factor leading to poor prognosis. Human-induced pluripotent stem cell-derived neural stem cell exosomes (hiPSC-NSC-Exos) have shown potential for brain injury repair in central nervous system diseases. In this study, we explored the impact of hiPSC-NSC-Exos on blood-brain barrier preservation and the underlying mechanism. Our results indicated that intranasal delivery of hiPSC-NSC-Exos mitigated neurological deficits, enhanced blood-brain barrier integrity, and reduced leukocyte infiltration in a mouse model of intracerebral hemorrhage. Additionally, hiPSC-NSC-Exos decreased immune cell infiltration, activated astrocytes, and decreased the secretion of inflammatory cytokines like monocyte chemoattractant protein-1, macrophage inflammatory protein-1α, and tumor necrosis factor-α post-intracerebral hemorrhage, thereby improving the inflammatory microenvironment. RNA sequencing indicated that hiPSC-NSC-Exo activated the PI3K/AKT signaling pathway in astrocytes and decreased monocyte chemoattractant protein-1 secretion, thereby improving blood-brain barrier integrity. Treatment with the PI3K/AKT inhibitor LY294002 or the monocyte chemoattractant protein-1 neutralizing agent C1142 abolished these effects. In summary, our findings suggest that hiPSC-NSC-Exos maintains blood-brain barrier integrity, in part by downregulating monocyte chemoattractant protein-1 secretion through activation of the PI3K/AKT signaling pathway in astrocytes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA