Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 26(8): 2462-2476, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35315192

RESUMO

Growing evidence demonstrated that cell death pathways including ferroptosis, apoptosis and necroptosis contribute to cardiac ischaemia/reperfusion (I/R) injury. We hypothesized that ferroptosis, apoptosis and necroptosis contribute differently to myocardial damage during acute cardiac I/R injury. Rats underwent cardiac I/R or sham operation. I/R-operated rats were divided into 4 groups: vehicle, apoptosis (Z-vad), ferroptosis (Fer-1) and necroptosis (Nec-1) inhibition. Rats in each cell death inhibitor group were subdivided into 3 different dose regimens: low, medium and high. Infarct size, left ventricular (LV) function, arrhythmias and molecular mechanism were investigated. Cardiac I/R caused myocardial infarction, LV dysfunction, arrhythmias, mitochondrial dysfunction, mitochondrial dynamic imbalance, inflammation, apoptosis and ferroptosis. Infarct size, LV dysfunction, mitochondrial dysfunction, apoptosis and ferroptosis were all reduced to a similar extent in rats treated with Z-vad (low and medium doses) or Fer-1 (medium and high doses). Fer-1 treatment also reduced mitochondrial dynamic imbalance and inflammation. No evidence of necroptosis was found in association with acute I/R injury, therefore Nec-1 treatment could not be assessed. Apoptosis and ferroptosis, not necroptosis, contributed to myocardial damage in acute I/R injury. Inhibitors of these 2 pathways provided effective cardioprotection in rats with I/R injury though modulation of mitochondrial function and attenuated apoptosis and ferroptosis.


Assuntos
Infarto do Miocárdio , Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Disfunção Ventricular Esquerda , Animais , Apoptose , Arritmias Cardíacas/tratamento farmacológico , Inflamação/metabolismo , Mitocôndrias Cardíacas/metabolismo , Isquemia Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Ratos , Ratos Wistar , Disfunção Ventricular Esquerda/metabolismo
2.
Inflamm Res ; 71(7-8): 861-872, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35655102

RESUMO

OBJECTIVE: Microglial hyperactivation and apoptosis were observed following myocardial infarction and ischemia reperfusion (I/R) injury. This study aimed to test the hypothesis that the apoptosis inhibitor, Z-VAD, attenuates microglial and astrocytic hyperactivation and brain inflammation in rats with cardiac I/R injury. MATERIALS AND METHODS: Rats were subjected to either sham or cardiac I/R operation (30 min-ischemia followed by 120-min reperfusion), rats in the cardiac I/R group were given either normal saline solution or Z-VAD at 3.3 mg/kg via intravenous injection 15 min prior to cardiac ischemia. Left ventricular ejection fraction (% LVEF) was determined during the cardiac I/R protocol. The brain tissues were removed and used to determine brain apoptosis, brain inflammation, microglial and astrocyte morphology. RESULTS: Cardiac dysfunction was observed in rats with cardiac I/R injury as indicated by decreased %LVEF. In the brain, we found brain apoptosis, brain inflammation, microglia hyperactivation, and reactive astrogliosis occurred following cardiac I/R injury. Pretreatment with Z-VAD effectively increased %LVEF, reduced brain apoptosis, attenuated brain inflammation by decreasing IL-1ß mRNA levels, suppressed microglial and astrocytic hyperactivation and proliferation after cardiac I/R injury. CONCLUSION: Z-VAD exerts neuroprotective effects against cardiac I/R injury not only targeting apoptosis but also microglial and astrocyte activation.


Assuntos
Encefalite , Traumatismo por Reperfusão Miocárdica , Traumatismo por Reperfusão , Animais , Apoptose , Microglia , Ratos , Traumatismo por Reperfusão/tratamento farmacológico , Volume Sistólico , Função Ventricular Esquerda
3.
Arch Biochem Biophys ; 695: 108629, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33068524

RESUMO

Cell death is a process consequential to cerebral ischemia and cerebral ischemia/reperfusion (I/R) injury. Recent evidence suggest that necroptosis has been involved in the pathogenesis of ischemic brain injury. The mechanism of necroptosis is initiated by an activation of inflammatory receptors including tumor necrosis factor, toll like receptor, and fas ligands. The signals activate the receptor-interacting protein kinase (RIPK) 1, 3, and a mixed-lineage kinase domain-like pseudokinase (MLKL) to instigate necroptosis. RIPK1 inhibitor, necrostatin-1, was developed, and dramatically reduced brain injury following cerebral ischemia in mice. Consequently, necroptosis could be a novel therapeutic target for stroke, which aims to reduce long-term adverse outcomes after cerebral ischemia. Several studies have been conducted to test the roles of necroptosis on cerebral ischemia and cerebral I/R injury, and the efficacy of necrostatin-1 has been tested in those models. Evidence regarding the roles of necroptosis and the effects of necrostatin-1, from in vitro and in vivo studies, has been summarized and discussed. In addition, other therapeutic managements, involving in necroptosis, are also included in this review. We believe that the insights from this review might clarify the clinical perspective and challenges involved in future stroke treatment by targeting the necroptosis pathway.


Assuntos
Isquemia Encefálica/metabolismo , Necroptose , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais , Animais , Isquemia Encefálica/patologia , Humanos , Imidazóis/metabolismo , Indóis/metabolismo , Camundongos , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Traumatismo por Reperfusão/patologia
4.
Exp Cell Res ; 376(1): 27-38, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30690027

RESUMO

The expression of Notch1 plays an important role in the occurrence and development of various tumors. Previous studies have shown that Notch1 plays a negative regulatory role in response to radiation-induced DNA damage responses. It also has been reported that Notch1 was highly expressed in cervical cancer. It is well known that the first-line chemotherapy drug for treating cervical cancer, cisplatin, targets double-stranded DNA and induces apoptosis in the cells. However, the tolerability of cisplatin is an issue to overcome in the treatment of cervical cancer. Cisplatin has been reported to induce the up-regulation of Notch1 intracellular domain (NICD) through the γ-proteolytic enzyme complex, a complex that mediates Notch1 activation. Therefore, whether Notch1 is highly expressed in the cells or cisplatin induced high expression of NICD in cervical cancer has not been specifically discussed in these studies. More importantly, whether the inhibition of Notch1 activation would enhance DNA damage induced by cisplatin and/or cellular apoptosis mediated via ATM/CHK2/P53 pathway has not been reported in cervical cancer. In this study, we observed an enhanced DNA damage and cellular apoptosis via the ATM/CHK2/P53 pathway(s) in HeLa and SiHa cells treated with cisplatin combined with DAPT of Notch1 inhibitor. Our findings provide an alternative therapeutic strategy for the treatment of cervical cancer in the clinic.


Assuntos
Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Receptor Notch1/genética , Neoplasias do Colo do Útero/tratamento farmacológico , Apoptose/efeitos dos fármacos , Proteínas Mutadas de Ataxia Telangiectasia/genética , Quinase do Ponto de Checagem 2/genética , Cisplatino/efeitos adversos , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Diaminas/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Receptor Notch1/antagonistas & inibidores , Tiazóis/farmacologia , Proteína Supressora de Tumor p53/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia
5.
J Transl Med ; 15(1): 189, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28877725

RESUMO

BACKGROUND: In order to improve therapy for head and neck squamous cell carcinoma (HNSCC), biomarkers associated with local and/or distant tumor relapses and cancer drug resistance are urgently needed. This study identified a potential biomarker, Bcl-2 associated athanogene-1 (BAG-1), that is implicated in HNSCC insensitive to cisplatin and tumor progression. METHODS: Primary and advanced (relapsed from parental) University of Michigan squamous cell carcinoma cell lines were tested for sensitivity to cisplatin and gene expression profiles were compared between primary (cisplatin sensitive) and the relapsed (cisplatin resistant) cell lines by using Agilent microarrays. Additionally, differentially expressed genes phosphorylated AKT, and BAG-1, and BCL-xL were evaluated for expression using HNSCC tissue arrays. RESULTS: Advanced HNSCC cells revealed resistant to cisplatin accompanied by increased expression of BAG-1 protein. siRNA knockdown of BAG-1 expression resulted in significant improvement of HNSCC sensitivity to cisplatin. BAG-1 expression enhanced stability of BCL-xL and conferred cisplatin resistant to the HNSCC cells. In addition, high levels of expression of phosphorylated AKT, BAG-1, and BCL-xL were observed in advanced HNSCC compared to in that of primary HNSCC. CONCLUSION: Increased expression of BAG-1 was associated with cisplatin resistance and tumor progression in HNSCC patients and warrants further validation in larger independent studies. Over expression of BAG-1 may be a biomarker for cisplatin resistance in patients with primary or recurrent HNSCCs and targeting BAG-1 could be helpful in overcoming cisplatin resistance.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Cisplatino/uso terapêutico , Proteínas de Ligação a DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/metabolismo , Fatores de Transcrição/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Cisplatino/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
6.
Chemistry ; 20(29): 8876-82, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-24954728

RESUMO

Gd(3+)-aggregated gold nanoclusters (AuNCs) encapsulated by silica shell (Gd(3+)-A-AuNCs@SiO2NPs) were strategically designed and prepared. The as-prepared nanoparticles exhibit aggregation-enhanced fluorescence (AEF), with an intensity that is up to 3.8 times that of discrete AuNCs. The clusters served as novel nanoprobes for in vitro and in vivo multimodal (fluorescence, magnetic resonance, and computed X-ray tomography) cancer imaging.


Assuntos
Ouro , Nanopartículas Metálicas , Neoplasias/diagnóstico , Dióxido de Silício , Animais , Linhagem Celular Tumoral , Feminino , Fluorescência , Corantes Fluorescentes/química , Ouro/química , Imageamento por Ressonância Magnética , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Camundongos , Imagem Óptica , Dióxido de Silício/química , Tomografia Computadorizada por Raios X
7.
Cell Death Discov ; 7(1): 312, 2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34689160

RESUMO

Cognitive impairment has been reported in patients with myocardial infarction despite a successful reperfusion therapy. Several modes of cell death are involved in brain damage during cardiac ischemia/reperfusion (I/R) injury. Although apoptosis, necroptosis, and ferroptosis inhibitors provided neuroprotection against cerebral I/R injury, the effects of these cell death inhibitors on the brain following cardiac I/R injury have never been investigated. We hypothesized that apoptosis, necroptosis, and ferroptosis inhibitors attenuate brain damage following cardiac I/R injury. One-hundred and twenty-six male rats were used: 6 rats were assigned to sham operation and 120 rats were subjected to 30-min regional cardiac ischemia and 120-min reperfusion. Rats in cardiac I/R group were pretreated with either vehicle (n = 12) or one of cell death inhibitors. Rats treated with apoptosis, necroptosis, or ferroptosis inhibitor were subdivided into three different doses including low (L), medium (M), and high (H) doses (n = 12/group). Z-VAD, necrostatin-1 (Nec-1), and ferrostatin-1 (Fer-1) were used as apoptosis, necroptosis, and ferroptosis inhibitor, respectively. Rats were sacrificed at the end of reperfusion, and the brain was used to analyze dendritic spine density, Alzheimer's disease (AD)-related proteins, blood-brain barrier (BBB) tight junction proteins, mitochondrial function, inflammation, and cell death. Our data showed that cardiac I/R led to brain damage and only apoptosis occurred in the hippocampus after cardiac I/R injury. In the cardiac I/R group, treatment with M-Z-VAD and all doses of Nec-1 decreased hippocampal apoptosis and amyloid beta aggregation, thereby reducing dendritic spine loss. M- and H-Fer-1 also reduced dendritic spine loss by suppressing ACSL4, TNF-α, amyloid beta, and tau hyperphosphorylation. Moreover, Bax/Bcl-2 was decreased in all treatment regimen except L-Z-VAD. Additionally, M-Z-VAD and M-Fer-1 partially attenuated mitochondrial dysfunction. Only L-Nec-1 preserved BBB proteins. In conclusion, cell death inhibitors prevented hippocampal dendritic spine loss caused by cardiac I/R injury through different mechanisms.

8.
PLoS One ; 12(3): e0172475, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28323890

RESUMO

Liriodendron is a genus of the magnolia family comprised of two flowering tree species that produce hardwoods of great ecological and economic value. However, only a limited amount of genetic research has been performed on the Liriodendron genus partly because transient or stable transgenic trees have been difficult to produce. In general, transient expression systems are indispensable for rapid, high-throughput screening and systematic characterization of gene functions at a low cost; therefore, development of such a system for Liriodendron would provide a necessary step forward for research on Magnoliaceae and other woody trees. Herein, we describe an efficient and rapid protocol for preparing protoplasts from the leaf mesophyll tissue of a Liriodendron hybrid and an optimized system for polyethylene glycol-mediated transient transfection of the protoplasts. Because the leaves of the Liriodendron hybrid are waxy, we formulated an enzyme mix containing 1.5% (w/v) Cellulase R-10, 0.5% (w/v) Macerozyme R-10, and 0.1% (w/v) Pectolyase Y-23 to efficiently isolate protoplasts from the Liriodendron hybrid leaf mesophyll tissue in 3 h. We optimized Liriodendron protoplast transfection efficiency by including 20 µg plasmid DNA per 104 protoplasts, a transformation time of 20 min, and inclusion of 20% (w/v) polyethylene glycol 4000. After integrating the Liriodendron WOX1 gene into pJIT166-GFP to produce a WOX1-GFP fusion product and transfecting it into isolated protoplasts, LhWOX1-GFP was found to localize to the nucleus according to its green fluorescence.


Assuntos
Expressão Gênica , Liriodendron , Células do Mesofilo , Protoplastos , Transfecção , Técnicas de Cultura de Células , Vetores Genéticos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Células do Mesofilo/metabolismo , Folhas de Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Protoplastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA