Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 35(51): e2306850, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37688530

RESUMO

The ultrathin thickness of 2D layered materials affords the control of their properties through defects, surface modification, and electrostatic fields more efficiently compared with bulk architecture. In particular, patterning design, such as moiré superlattice patterns and spatially periodic dielectric structures, are demonstrated to possess the ability to precisely control the local atomic and electronic environment at large scale, thus providing extra degrees of freedom to realize tailored material properties and device functionality. Here, the scalable atomic-scale patterning in superionic cuprous telluride by using the bonding difference at nonequivalent copper sites is reported. Moreover, benefitting from the natural coupling of ordered and disordered sublattices, controllable piezoelectricity-like multilevel switching and bipolar switching with the designed crystal structure and electrical contact is realized, and their application in image enhancement is demonstrated. This work extends the known classes of patternable crystals and atomic switching devices, and ushers in a frontier for image processing with memristors.

2.
Nat Commun ; 13(1): 5241, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068242

RESUMO

The discovery of magnetism in ultrathin crystals opens up opportunities to explore new physics and to develop next-generation spintronic devices. Nevertheless, two-dimensional magnetic semiconductors with Curie temperatures higher than room temperature have rarely been reported. Ferrites with strongly correlated d-orbital electrons may be alternative candidates offering two-dimensional high-temperature magnetic ordering. This prospect is, however, hindered by their inherent three-dimensional bonded nature. Here, we develop a confined-van der Waals epitaxial approach to synthesizing air-stable semiconducting cobalt ferrite nanosheets with thickness down to one unit cell using a facile chemical vapor deposition process. The hard magnetic behavior and magnetic domain evolution are demonstrated by means of vibrating sample magnetometry, magnetic force microscopy and magneto-optical Kerr effect measurements, which shows high Curie temperature above 390 K and strong dimensionality effect. The addition of room-temperature magnetic semiconductors to two-dimensional material family provides possibilities for numerous novel applications in computing, sensing and information storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA