Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Hum Mol Genet ; 32(23): 3276-3298, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37688574

RESUMO

Cyclin-dependent kinase-like 5 (CDKL5) is a serine-threonine kinase enriched in the forebrain to regulate neuronal development and function. Patients with CDKL5 deficiency disorder (CDD), a severe neurodevelopmental condition caused by mutations of CDKL5 gene, present early-onset epilepsy as the most prominent feature. However, spontaneous seizures have not been reported in mouse models of CDD, raising vital questions on the human-mouse differences and the roles of CDKL5 in early postnatal brains. Here, we firstly measured electroencephalographic (EEG) activities via a wireless telemetry system coupled with video-recording in neonatal mice. We found that mice lacking CDKL5 exhibited spontaneous epileptic EEG discharges, accompanied with increased burst activities and ictal behaviors, specifically at postnatal day 12 (P12). Intriguingly, those epileptic spikes disappeared after P14. We next performed an unbiased transcriptome profiling in the dorsal hippocampus and motor cortex of Cdkl5 null mice at different developmental timepoints, uncovering a set of age-dependent and brain region-specific alterations of gene expression in parallel with the transient display of epileptic activities. Finally, we validated multiple differentially expressed genes, such as glycine receptor alpha 2 and cholecystokinin, at the transcript or protein levels, supporting the relevance of these genes to CDKL5-regulated excitability. Our findings reveal early-onset neuronal hyperexcitability in mouse model of CDD, providing new insights into CDD etiology and potential molecular targets to ameliorate intractable neonatal epilepsy.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Espasmos Infantis , Humanos , Animais , Camundongos , Transcriptoma/genética , Espasmos Infantis/genética , Espasmos Infantis/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Epilepsia/genética , Prosencéfalo/metabolismo , Camundongos Knockout
2.
J Exp Bot ; 74(1): 118-129, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36227010

RESUMO

Encasements formed around haustoria and biotrophic hyphae as well as hypersensitive reaction (HR) cell death are essential plant immune responses to filamentous pathogens. In this study we examine the components that may contribute to the absence of these responses in susceptible barley attacked by the powdery mildew fungus. We find that the effector CSEP0162 from this pathogen targets plant MONENSIN SENSITIVITY1 (MON1), which is important for the fusion of multivesicular bodies to their target membranes. Overexpression of CSEP0162 and silencing of barley MON1 both inhibit encasement formation. We find that the Arabidopsis ecotype No-0 has resistance to powdery mildew, and that this is partially dependent on MON1. Surprisingly, we find the MON1-dependent resistance in No-0 not only includes an encasement response, but also an effective HR. Similarly, silencing of MON1 in barley also blocks Mla3-mediated HR-based powdery mildew resistance. Our results indicate that MON1 is a vital plant immunity component, and we speculate that the barley powdery mildew fungus introduces the effector CSEP0162 to target MON1 and hence reduce encasement formation and HR.


Assuntos
Arabidopsis , Ascomicetos , Hordeum , Ascomicetos/fisiologia , Hordeum/genética , Hordeum/metabolismo , Monensin/metabolismo , Imunidade Vegetal , Arabidopsis/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Hum Mol Genet ; 29(14): 2408-2419, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32588892

RESUMO

Cyclin-dependent kinase-like 5 (CDKL5), a serine-threonine kinase encoded by an X-linked gene, is highly expressed in the mammalian forebrain. Mutations in this gene cause CDKL5 deficiency disorder, a neurodevelopmental encephalopathy characterized by early-onset seizures, motor dysfunction, and intellectual disability. We previously found that mice lacking CDKL5 exhibit hyperlocomotion and increased impulsivity, resembling the core symptoms in attention-deficit hyperactivity disorder (ADHD). Here, we report the potential neural mechanisms and treatment for hyperlocomotion induced by CDKL5 deficiency. Our results showed that loss of CDKL5 decreases the proportion of phosphorylated dopamine transporter (DAT) in the rostral striatum, leading to increased levels of extracellular dopamine and hyperlocomotion. Administration of methylphenidate (MPH), a DAT inhibitor clinically effective to improve symptoms in ADHD, significantly alleviated the hyperlocomotion phenotype in Cdkl5 null mice. In addition, the improved behavioral effects of MPH were accompanied by a region-specific restoration of phosphorylated dopamine- and cAMP-regulated phosphoprotein Mr 32 kDa, a key signaling protein for striatal motor output. Finally, mice carrying a Cdkl5 deletion selectively in DAT-expressing dopaminergic neurons, but not dopamine receptive neurons, recapitulated the hyperlocomotion phenotype found in Cdkl5 null mice. Our findings suggest that CDKL5 is essential to control locomotor behavior by regulating region-specific dopamine content and phosphorylation of dopamine signaling proteins in the striatum. The direct, as well as indirect, target proteins regulated by CDKL5 may play a key role in movement control and the therapeutic development for hyperactivity disorders.


Assuntos
Síndromes Epilépticas/genética , Hipercinese/genética , Proteínas Serina-Treonina Quinases/genética , Espasmos Infantis/genética , Animais , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Síndromes Epilépticas/patologia , Transtornos Neurológicos da Marcha/genética , Transtornos Neurológicos da Marcha/metabolismo , Transtornos Neurológicos da Marcha/patologia , Humanos , Hipercinese/metabolismo , Hipercinese/patologia , Metilfenidato/metabolismo , Camundongos , Camundongos Knockout , Espasmos Infantis/patologia
4.
Hum Mol Genet ; 26(20): 3922-3934, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29016850

RESUMO

Neurodevelopmental disorders frequently share common clinical features and appear high rate of comorbidity, such as those present in patients with attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorders (ASD). While characterizing behavioral phenotypes in the mouse model of cyclin-dependent kinase-like 5 (CDKL5) disorder, a neurodevelopmental disorder caused by mutations in the X-linked gene encoding CDKL5, we found that these mice manifested behavioral phenotypes mimicking multiple key features of ASD, such as impaired social interaction and communication, as well as increased stereotypic digging behaviors. These mice also displayed hyper-locomotion, increased aggressiveness and impulsivity, plus deficits in motor and associative learning, resembling primary symptoms of ADHD. Through brain region-specific biochemical analysis, we uncovered that loss of CDKL5 disrupts dopamine synthesis and the expression of social communication-related key genes, such as forkhead-box P2 and mu-opioid receptor, in the corticostriatal circuit. Together, our findings support that CDKL5 plays a role in the comorbid features of autism and ADHD, and mice lacking CDKL5 may serve as an animal model to study the molecular and circuit mechanisms underlying autism-ADHD comorbidity.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/enzimologia , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Transtorno do Espectro Autista/enzimologia , Transtorno do Espectro Autista/genética , Transtorno Autístico/enzimologia , Transtorno Autístico/genética , Encéfalo/enzimologia , Encéfalo/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Genes Ligados ao Cromossomo X , Hipercinese/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética
5.
Int J Mol Sci ; 20(14)2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31295900

RESUMO

Soybean mosaic virus (SMV) is one of the most prevalent and important pathogens of soybean, which produces 11 proteins, and the third protein, P3, was suggested to be involved in virus movement and replication, as well as host infection. During the virus infection, host proteins are essential in the virus cycle. However, there is no comprehensive report on the network of host proteins that interact with P3. Fifty-one interactors were identified by using the P3 protein as the bait against the SMV SC15 strain-challenged soybean cDNA library. These proteins were classified into five groups, including transport and protein transport-related proteins, defense and disease-related proteins, photosynthesis proteins, cellular metabolic proteins, and unknown proteins. Among these proteins, the protein defined as hypersensitive response-like lesion-inducing (HRLI) appeared multiple times and showed strong affinity with P3, which indicated its important role in SMV infection. Thus, it was chosen for further investigation. Phylogenetic classification showed that paralog proteins GmHRLI-1 and GmHRLI-2 clustered together and shared 90% homologous identity. Bimolecular fluorescence complementation (BiFC) assay was carried out to confirm the interaction, and fluorescence was detected at the cell periplasmic as well as at the nucleus. Subcellular localization showed that GmHRLI was localized to the cell periplasmic, while the co-localization of GmHRLI and P3 signals was also observed in the nucleus, suggesting that GmHRLI could interact with P3 and promoted the translation of P3 to the nucleus. Moreover, the gene expression of GmHRLI was abundant in the roots, leaves, and flowers, and could be induced by SMV infection, suggesting its involvement in SMV infection. Our results together lay the foundation to explore the mechanisms of P3 in the HR process and the HRLI protein function in SMV response.


Assuntos
Proteínas de Transporte/metabolismo , Potyvirus/metabolismo , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Perfilação da Expressão Gênica , Ordem dos Genes , Vetores Genéticos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno/genética , Filogenia , Doenças das Plantas/virologia , Potyvirus/classificação , Potyvirus/genética , Ligação Proteica , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Proteínas Virais/genética
6.
Appl Opt ; 57(20): 5566-5573, 2018 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-30118065

RESUMO

Ultrasmooth surfaces with sub-nanometer roughness and low damage are a great challenge for optical fabrication. Ion beam sputtering (IBS) has obvious advantages on the improvement of surface quality and the removal of surface defects. However, surface defects with different properties and structures display different evolution laws during the IBS process, which affects the roughness change and needs classification studies. In this paper, classification experiments are carried out to study the surface topography evolution of plastic scratches, brittle scratches, and micro-particles during the IBS process. The plastic scratches and micro-particles can be removed, while the brittle scratches can be passivated, so that surface defects can be reduced and surface quality improved. The corresponding evolution mechanisms are discussed in depth, and we show that micro-topography characteristics and material properties are important factors affecting the evolution of surface topography. Through the summary of evolution laws of different surface states, the Gaussian distribution law of surface roughness is established. The evolution regularity and mechanism of surface roughness during the IBS process are expounded upon from the perspective of microscopic morphology, which lays a foundation for ultra-smooth surface manufacturing with low damage.

7.
J Neurosci ; 35(15): 6209-20, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25878291

RESUMO

Methyl-CpG binding protein 2 (MeCP2) is a chromatin regulator highly expressed in mature neurons. Mutations of MECP2 gene cause >90% cases of Rett syndrome, a neurodevelopmental disorder featured by striking psychomotor dysfunction. In Mecp2-null mice, the motor deficits are associated with reduction of dopamine content in the striatum, the input nucleus of basal ganglia mostly composed of GABAergic neurons. Here we investigated the causal role of MeCP2 in modulation of striatal dopamine content and psychomotor function. We found that mice with selective removal of MeCP2 in forebrain GABAergic neurons, predominantly in the striatum, phenocopied Mecp2-null mice in dopamine deregulation and motor dysfunction. Selective expression of MeCP2 in the striatum preserved dopamine content and psychomotor function in both males and females. Notably, the dopamine deregulation was primarily confined to the rostral striatum, and focal deletion or reactivation of MeCP2 expression in the rostral striatum through adeno-associated virus effectively disrupted or restored dopamine content and locomotor activity, respectively. Together, these findings demonstrate that striatal MeCP2 maintains local dopamine content in a non-cell autonomous manner in the rostral striatum and that is critical for psychomotor control.


Assuntos
Córtex Cerebral/metabolismo , Corpo Estriado/metabolismo , Dopamina/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Desempenho Psicomotor/fisiologia , Análise de Variância , Animais , Cromatografia Líquida de Alta Pressão , Comportamento Exploratório/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Masculino , Aprendizagem em Labirinto/fisiologia , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Transgênicos , Atividade Motora/genética , Mutação/genética , Transdução Genética
8.
Opt Express ; 24(4): 4247-57, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26907072

RESUMO

Formation of subsurface damage has an inseparable relationship with microscopic material behaviors. In this work, our research results indicate that the formation process of subsurface damage often accompanies with the local densification effect of fused silica material, which seriously influences microscopic material properties. Interestingly, we find ion beam sputtering (IBS) is very sensitive to the local densification, and this microscopic phenomenon makes IBS as a promising technique for the detection of nanoscale subsurface damages. Additionally, to control the densification effect and subsurface damage during the fabrication of high-performance optical components, a combined polishing technology integrating chemical-mechanical polishing (CMP) and ion beam figuring (IBF) is proposed. With this combined technology, fused silica without subsurface damage is obtained through the final experimental investigation, which demonstrates the feasibility of our proposed method.

9.
Opt Express ; 23(6): 7094-100, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-25837054

RESUMO

A translation-reduced ion beam figuring (TRIBF) technique for five-axis ion beam figuring (IBF) plants is proposed to process large size components which cannot be processed in the traditional way. This novel technique enhances the capability of five-axis IBF plants by taking advantage of their rotation axes. The IBF kinematic model is described and the TRIBF processing technique is established by solving the motion parameters. Verification experiments are conducted on a 150 mm diameter planar mirror. This mirror was processed by TRIBF technique with only a 100 mm translation stage. The surface error was reduced from initial 10.7 nm rms to 1.3 nm rms within 97 minute processing time. The result indicates that the TRIBF processing technique is feasible and effective.

10.
Theor Appl Genet ; 128(8): 1489-505, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25930057

RESUMO

KEY MESSAGE: Soybean mosaic virus resistance was significantly improved in multiple soybean cultivars through genetic transformation induced by inverted repeat-SMV- HC - Pro genes based on RNAi and post-transcriptional gene silencing. Here, we demonstrate Soybean mosaic virus (SMV) resistance in transgenic soybean plants. Transformation of five soybean genotypes with a construct containing inverted repeat-SMV-HC-Pro genes-induced high-level SMV resistance. Through leaf-painting assays, polymerase chain reaction (PCR) verification and LibertyLink(®) strip detection, 105 T0 and 1059 T1 plants were confirmed as transgene-positive. Southern blotting confirmed insertion of the T-DNA into the genomic DNA and revealed a low-copy integration pattern. Most T0 plants were fertile and transmitted the exogenous genes to their progenies (ratios of 3:1 or 15:1). In the T1 generation, virus resistance was evaluated visually after inoculation with SMV (strain SC3) and 441 plants were highly resistant (HR). SMV disease rating was classified on a scale with 0 = symptomless and 4 = mosaic symptoms with severe leaf curl. In the positive T1 plants, the disease rating on average was 1.42 (range 0.45-2.14) versus 3.2 (range 2-4) for the nontransformed plants. With the T2 generation, 75 transgene-positive plants were inoculated with SC3, and 57 HR plants were identified. Virus-induced seed coat mottling was eliminated in the resistant lines. Analysis of SMV levels in the plants was performed using quantitative real-time PCR and double-antibody sandwich enzyme-linked immunosorbent assays; the results revealed no virus or a gradual reduction over time in the viral content, thereby supporting the visual examination results. This is the first report demonstrating pathogen-derived resistance to SMV induced by inverted repeat-SMV-HC-Pro genes in multiple soybean cultivars. Our findings contribute positively to the study of transgenic SMV-resistance using RNA interference.


Assuntos
Cisteína Endopeptidases/genética , Resistência à Doença/genética , Glycine max/genética , Vírus do Mosaico/patogenicidade , Doenças das Plantas/virologia , Proteínas Virais/genética , Agrobacterium tumefaciens , DNA Bacteriano/genética , DNA de Plantas/genética , Genótipo , Doenças das Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/virologia , Interferência de RNA , Glycine max/virologia , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA