Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 325: 117766, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38266949

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: A classic stroke formula is Buyang Huanwu Decoction (BYHWD), Glycosides are the pharmacological components found in BYHWD, which are utilized for the prevention and management of cerebral ischemia-reperfusion (CIR), as demonstrated in a previous study. Its neuroprotective properties are closely related to its ability to modulate inflammation, but its mechanism is as yet unclear. AIM OF THE STUDY: A research was undertaken to investigate the impact of glycosides on the inflammation of CIR through the PTEN-induced putative kinase-1 (PINK1)/Parkin mitophagy pathway. MATERIALS AND METHODS: Analyzing glycosides containing serum components was performed with ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS). Glycosides were applied to rat of Middle cerebral artery occlusion/reperfusion (MCAO/R) model and primary neural cell of Oxygen glucose deprivation/reperfusion (OGD/R) model. The neuroprotective effect and the regulation of mitophagy of glycosides were evaluated through neural damage and PINK1/Parkin mitophagy activation. Moreover, the assessment of the relationship between glycosides regulation of mitophagy and its anti-inflammatory effects subsequent to mitophagy blockade was conducted by examining neural damage, PINK1/Parkin mitophagy activation, and levels of pyroptosis. RESULTS: (1) It was observed that the administration of glycosides resulted in a decrease in neurological function scores, a reduction in cerebral infarction volume, an increase in mitochondrial autophagosome, and the maintenance of a high expression status of light chain 3 (LC3) II/LC3Ⅰ protein. Additionally, there was a significant inhibition of p62 protein expression and an enhancement of PINK1 and Parkin protein expression. Furthermore, it was found that the effect of glycosides at a dosage of 0.128 g · kg-1 was significantly superior to that of glycosides at a dosage of 0.064 g · kg-1. Notably, the neuroprotective effect and inhibition of pyroptosis protein of glycosides at a dosage of 0.128 g · kg-1 were attenuated when mitochondrial autophagy was blocked. (2) Glycosides repaired cellular morphological damage, enhanced cell survival, and reduced Lactate dehydrogenase (LDH) leakage, with glycosides (2.36 µg·mL-1 and 4.72 µg·mL-1) neuronal protection being the strongest. Glycosides (4.72 µg·mL-1) maintained LC3II/LC3Ⅰ protein high expression state, inhibited p62 protein expression, and promoted PINK1 and Parkin protein expression, which was stronger than glycosides (2.36 µg·mL-1). The blockade of mitophagy resulted in a reduction of neuroprotection and inhibition of pyroptosis protein exerted by glycosides. CONCLUSION: Glycosides demonstrate the ability to hinder inflammation through the activation of the PINK1/Parkin mitophagy pathway, thereby leading to subsequent neuroprotective effects on CIR.


Assuntos
Isquemia Encefálica , Medicamentos de Ervas Chinesas , Fármacos Neuroprotetores , Ratos , Animais , Mitofagia , Glicosídeos/farmacologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos Sprague-Dawley , Proteínas Quinases/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Reperfusão , Inflamação/tratamento farmacológico
2.
ACS Appl Mater Interfaces ; 8(14): 9275-84, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26999636

RESUMO

Current bioelectronic medicines for neurological therapies generally involve treatment with a bioelectronic system comprising a power supply unit and a bioelectrode device. Further integration of wireless and self-powered units is of practical importance for implantable bioelectronics. In this study, we developed biocompatible organic photovoltaics (OPVs) for serving as wireless electrical power supply units that can be operated under illumination with near-infrared (NIR) light, and organic bioelectronic interface (OBEI) electrode devices as neural stimulation electrodes. The OPV/OBEI integrated system is capable to provide electrical stimulation (ES) as a means of enhancing neuron-like PC12 cell differentiation and neurite outgrowth. For the OPV design, we prepared devices incorporating two photoactive material systems--ß-carotene/N,N'-dioctyl-3,4,9,10-perylenedicarboximide (ß-carotene/PTCDI-C8) and poly(3-hexylthiophene)/phenyl-C61-butyric acid methyl ester (P3HT/PCBM)--that exhibited open circuit voltages of 0.11 and 0.49 V, respectively, under NIR light LED (NLED) illumination. Then, we connected OBEI devices with different electrode gaps, incorporating biocompatible poly(hydroxymethylated-3,4-ethylenedioxythiophene), to OPVs to precisely tailor the direct current electric field conditions during the culturing of PC12 cells. This NIR light-driven OPV/OBEI system could be engineered to provide tunable control over the electric field (from 220 to 980 mV mm(-1)) to promote 64% enhancement in the neurite length, direct the neurite orientation on chips, or both. The OPV/OBEI integrated systems under NIR illumination appear to function as effective power delivery platforms that should meet the requirements for wirelessly offering medical ES to a portion of the nervous system; they might also be a key technology for the development of next-generation implantable bioelectronics.


Assuntos
Materiais Biocompatíveis/uso terapêutico , Diferenciação Celular/efeitos da radiação , Terapia por Estimulação Elétrica/métodos , Crescimento Neuronal/efeitos da radiação , Animais , Materiais Biocompatíveis/química , Fontes de Energia Elétrica , Humanos , Imidas/química , Neuritos/efeitos da radiação , Crescimento Neuronal/fisiologia , Compostos Organosselênicos/química , Células PC12 , Perileno/análogos & derivados , Perileno/química , Ratos , Tecnologia sem Fio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA