Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 17(32): e2100698, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34197025

RESUMO

The sustainable light can generate reduction and oxidation centers in situ through the generation of photoexcited electrons and holes in the presence of photocatalyst. However, the photoexcited electrons and holes have huge Coulombic attraction and high exciton binding energy due to the weak screening effect and dielectric properties in many low-dimensional conjugated polymers, such as carbon nitride. Reducing the exciton binding energy of carbon nitride and promoting the conversion of excitons into free charge carriers are necessary for improving the activity of photocatalytic reactions but still very challenging. Here, by introducing amino-cyano functional groups into carbon nitride, it is demonstrated that excitons can be effectively dissociated into electrons and holes by finely controlling the charge distribution of heptazine ring. It is found that carbon nitride with heptazine rings of positive charge distribution can greatly reduce the exciton binding energy to 24 from 71 meV. Compared with heptazine ring having negative charge distribution, heptazine ring with positive charge distribution can increase photocatalytic hydrogen production of carbon nitride by up to ten times. This work provides an easy way to promote the dissociation of excitons in carbon nitride by regulating the charge distribution.


Assuntos
Elétrons , Nitrilas , Oxirredução , Polímeros
2.
ChemMedChem ; : e202300643, 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39245642

RESUMO

The emerging of lysosomal targeting chimera (LYTAC) expands the field of targeted protein degradation (TPD) to include the extracellular proteins for precise depletion. However, most of the reported LYTACs either induce ubiquitous degradation of the protein of interest (POI) in a broad range of tissues or specifically target liver cells. More tissue-selective degraders are highly desirable. Herein, we describe the development of cyclic RGD (cRGD) peptide-antibody conjugates as a novel class of integrin targeting chimeras (ITACs) with potential cancer selectivity. Our results indicate that the ITACs are able to recruit integrin to induce the degradation of both soluble and membrane targets in the lysosome. We observed higher efficiency of ITACs on degrading membrane protein in cancer cells, providing a promising platform for cancer-selective TPD strategy.

3.
Nat Commun ; 15(1): 8695, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39379374

RESUMO

Targeted protein degradation has emerged as a novel therapeutic modality to treat human diseases by utilizing the cell's own disposal systems to remove protein target. Significant clinical benefits have been observed for degrading many intracellular proteins. Recently, the degradation of extracellular proteins in the lysosome has been developed. However, there have been limited successes in selectively degrading protein targets in disease-relevant cells or tissues, which would greatly enhance the development of precision medicine. Additionally, most degraders are not readily available due to their complexity. We report a class of easily accessible Folate Receptor TArgeting Chimeras (FRTACs) to recruit the folate receptor, primarily expressed on malignant cells, to degrade extracellular soluble and membrane cancer-related proteins in vitro and in vivo. Our results indicate that FRTAC is a general platform for developing more precise and effective chemical probes and therapeutics for the study and treatment of cancers.


Assuntos
Neoplasias , Proteólise , Humanos , Animais , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Linhagem Celular Tumoral , Camundongos , Ácido Fólico/metabolismo , Lisossomos/metabolismo , Feminino , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor 1 de Folato/metabolismo , Receptor 1 de Folato/genética , Camundongos Nus , Receptores de Folato com Âncoras de GPI/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética
4.
ACS Med Chem Lett ; 14(6): 719-726, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37312839

RESUMO

Lysosome targeting chimeras (LYTACs) are a new protein degradation strategy that has recently emerged. LYTACs utilize the native cell internalization process in the body to target and degrade therapeutically relevant extracellular proteins via the lysosomal pathways. The first lysosomal internalization receptor recently used for LYTACs is the mannose-6-phosphate receptor (M6PR). M6PR is expressed across most cell types, making it ideal for internalization and degradation of numerous extracellular proteins. Herein, we report the development of a series of structurally well-defined mannose-6-phosphonate (M6Pn)-peptide conjugates that are capable of linking to a variety of targeting ligands for proteins of interest and successfully internalizing and degrading those proteins through M6PR. This will greatly facilitate the development of M6Pn based LYTACs for therapeutic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA