Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Circ Res ; 126(10): e80-e96, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32134364

RESUMO

RATIONALE: Diabetes mellitus is a complex, multisystem disease, affecting large populations worldwide. Chronic CaMKII (Ca2+/calmodulin-dependent kinase II) activation may occur in diabetes mellitus and be arrhythmogenic. Diabetic hyperglycemia was shown to activate CaMKII by (1) O-linked attachment of N-acetylglucosamine (O-GlcNAc) at S280 leading to arrhythmia and (2) a reactive oxygen species (ROS)-mediated oxidation of CaMKII that can increase postinfarction mortality. OBJECTIVE: To test whether high extracellular glucose (Hi-Glu) promotes ventricular myocyte ROS generation and the role played by CaMKII. METHODS AND RESULTS: We tested how extracellular Hi-Glu influences ROS production in adult ventricular myocytes, using DCF (2',7'-dichlorodihydrofluorescein diacetate) and genetically targeted Grx-roGFP2 redox sensors. Hi-Glu (30 mmol/L) significantly increased the rate of ROS generation-an effect prevented in myocytes pretreated with CaMKII inhibitor KN-93 or from either global or cardiac-specific CaMKIIδ KO (knockout) mice. CaMKII KO or inhibition also prevented Hi-Glu-induced sarcoplasmic reticulum Ca2+ release events (Ca2+ sparks). Thus, CaMKII activation is required for Hi-Glu-induced ROS generation and sarcoplasmic reticulum Ca2+ leak in cardiomyocytes. To test the involvement of O-GlcNAc-CaMKII pathway, we inhibited GlcNAcylation removal by Thiamet G (ThmG), which mimicked the Hi-Glu-induced ROS production. Conversely, inhibition of GlcNAcylation (OSMI-1 [(αR)-α-[[(1,2-dihydro-2-oxo-6-quinolinyl)sulfonyl]amino]-N-(2-furanylmethyl)-2-methoxy-N-(2-thienylmethyl)-benzeneacetamide]) prevented ROS induction in response to either Hi-Glu or ThmG. Moreover, in a CRSPR-based knock-in mouse in which the functional GlcNAcylation site on CaMKIIδ was ablated (S280A), neither Hi-Glu nor ThmG induced myocyte ROS generation. So CaMKIIδ-S280 is required for the Hi-Glu-induced (and GlcNAc dependent) ROS production. To identify the ROS source(s), we used different inhibitors of NOX (NADPH oxidase) 2 (Gp91ds-tat peptide), NOX4 (GKT137831), mitochondrial ROS (MitoTempo), and NOS (NO synthase) pathway inhibitors (L-NAME, L-NIO, and L-NPA). Only NOX2 inhibition or KO prevented Hi-Glu/ThmG-induced ROS generation. CONCLUSIONS: Diabetic hyperglycemia induces acute cardiac myocyte ROS production by NOX2 that requires O-GlcNAcylation of CaMKIIδ at S280. This novel ROS induction may exacerbate pathological consequences of diabetic hyperglycemia.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomiopatias Diabéticas/etiologia , Glucose/toxicidade , Hiperglicemia/complicações , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Sinalização do Cálcio , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/deficiência , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Células Cultivadas , Cardiomiopatias Diabéticas/enzimologia , Cardiomiopatias Diabéticas/fisiopatologia , Ativação Enzimática , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Glicosilação , Humanos , Hiperglicemia/enzimologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/enzimologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/enzimologia , NADPH Oxidase 2/deficiência , NADPH Oxidase 2/genética , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/enzimologia
2.
Cell Rep ; 32(3): 107925, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32697997

RESUMO

Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have enormous potential for the study of human cardiac disorders. However, their physiological immaturity severely limits their utility as a model system and their adoption for drug discovery. Here, we describe maturation media designed to provide oxidative substrates adapted to the metabolic needs of human iPSC (hiPSC)-CMs. Compared with conventionally cultured hiPSC-CMs, metabolically matured hiPSC-CMs contract with greater force and show an increased reliance on cardiac sodium (Na+) channels and sarcoplasmic reticulum calcium (Ca2+) cycling. The media enhance the function, long-term survival, and sarcomere structures in engineered heart tissues. Use of the maturation media made it possible to reliably model two genetic cardiac diseases: long QT syndrome type 3 due to a mutation in the cardiac Na+ channel SCN5A and dilated cardiomyopathy due to a mutation in the RNA splicing factor RBM20. The maturation media should increase the fidelity of hiPSC-CMs as disease models.


Assuntos
Meios de Cultura/farmacologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Cálcio/metabolismo , Doença do Sistema de Condução Cardíaco/genética , Doença do Sistema de Condução Cardíaco/fisiopatologia , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/fisiopatologia , Regulação da Expressão Gênica/efeitos dos fármacos , Coração/efeitos dos fármacos , Coração/fisiopatologia , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Síndrome do QT Longo/genética , Síndrome do QT Longo/fisiopatologia , Potenciais da Membrana/efeitos dos fármacos , Modelos Biológicos , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Fenótipo , Engenharia Tecidual
3.
Neurosci Lett ; 423(2): 118-22, 2007 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-17681692

RESUMO

Nurr1 is an orphan nuclear receptor essential for development and survival of dopaminergic neurons. Mutations in Nurr1 are associated with Parkinson's disease (PD) and there is a correlation between Nurr1 and tyrosine hydroxylase (TH) expression in PD brain. Two domains, activation function 1 (AF1) at the N-terminus and AF2 at the C-terminus of Nurr1, are important for Nurr1 activation. AF1 domain is conserved in NGFI-B/Nurr1/Nor-1 family members and MAPK signal pathway is involved in AF1 activity. Using in vitro phoshorylation assays, we have shown that ERK2 is a kinase to phosphorylate Nurr1 on multiple sites. S126 and T132, which are located near AF1 core of Nurr1, are dominant sites phosphorylated by ERK2. Moreover, using GST pull-down and co-IP assays, we identified that both the N-terminus of Nurr1 containing three ERK docking domains and another ERK docking domain in Nurr1 DNA binding domain are able to bind to ERK2. Furthermore, overexpression of a constitutively active form of MEK1, together with Nurr1 and mouse ERK2, greatly increases the tyrosine hydroxylase expression in SH-SY5Y cells. Reporter gene assays show that Nurr1Delta124-133/T185A, an ERK2 phospho-site mutant form, could not further increase its transcriptional activity on TH promoter, suggesting that Nurr1 phosphorylation by ERK2 may regulate its transcriptional activity on TH promoter. Thus, our results indicate that Nurr1 phosphorylation by ERK2 may play a role in regulating the TH expression.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Fatores de Transcrição/metabolismo , Tirosina 3-Mono-Oxigenase/biossíntese , Linhagem Celular , Proteínas de Ligação a DNA/genética , Eletroforese em Gel de Poliacrilamida , Humanos , Immunoblotting , Imunoprecipitação , Técnicas In Vitro , Neoplasias , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares , Fosforilação , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Transcrição Gênica , Transfecção , Regulação para Cima
4.
J Cardiovasc Dev Dis ; 4(3)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28868308

RESUMO

Cardiac pacemaking, at rest and during the sympathetic fight-or-flight response, depends on cAMP (3',5'-cyclic adenosine monophosphate) signaling in sinoatrial node myocytes (SAMs). The cardiac "funny current" (If) is among the cAMP-sensitive effectors that drive pacemaking in SAMs. If is produced by hyperpolarization-activated, cyclic nucleotide-sensitive (HCN) channels. Voltage-dependent gating of HCN channels is potentiated by cAMP, which acts either by binding directly to the channels or by activating the cAMP-dependent protein kinase (PKA), which phosphorylates them. PKA activity is required for signaling between ß adrenergic receptors (ßARs) and HCN channels in SAMs but the mechanism that constrains cAMP signaling to a PKA-dependent pathway is unknown. Phosphodiesterases (PDEs) hydrolyze cAMP and form cAMP signaling domains in other types of cardiomyocytes. Here we examine the role of PDEs in regulation of If in SAMs. If was recorded in whole-cell voltage-clamp experiments from acutely-isolated mouse SAMs in the absence or presence of PDE and PKA inhibitors, and before and after ßAR stimulation. General PDE inhibition caused a PKA-independent depolarizing shift in the midpoint activation voltage (V1/2) of If at rest and removed the requirement for PKA in ßAR-to-HCN signaling. PDE4 inhibition produced a similar PKA-independent depolarizing shift in the V1/2 of If at rest, but did not remove the requirement for PKA in ßAR-to-HCN signaling. PDE3 inhibition produced PKA-dependent changes in If both at rest and in response to ßAR stimulation. Our results suggest that PDE3 and PDE4 isoforms create distinct cAMP signaling domains that differentially constrain access of cAMP to HCN channels and establish the requirement for PKA in signaling between ßARs and HCN channels in SAMs.

5.
Circ Arrhythm Electrophysiol ; 8(6): 1472-80, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26407967

RESUMO

BACKGROUND: Most cardiac arrhythmias occur intermittently. As a cellular precursor of lethal cardiac arrhythmias, early afterdepolarizations (EADs) during action potentials(APs) have been extensively investigated, and mechanisms for the occurrence of EADs on a beat-to-beat basis have been proposed. However, no previous study explains slow fluctuations in EADs, which may underlie intermittency of EAD trains and consequent arrhythmias. We hypothesize that the feedback of intracellular calcium and sodium concentrations ([Na](i) and [Ca](i)) that influence membrane voltage (V) can explain EAD intermittency. METHODS AND RESULTS: AP recordings in rabbit ventricular myocytes revealed intermittent EADs, with slow fluctuations between runs of APs with EADs present or absent. We then used dynamical systems analysis and detailed mathematical models of rabbit ventricular myocytes that replicate the observed behavior and investigated the underlying mechanism. We found that a dominance of inward Na-Ca exchanger current (I(NCX)) over Ca-dependent inactivation of L-type Ca current (I(CaL)) forms a positive feedback between [Ca](i) and V, thus resulting in 2 stable AP states, with and without EADs (ie, bistability). Slow changes in [Na](i) determine the transition between these 2 states, forming a bistable on-off switch of EADs. Tissue simulations showed that this bistable switch of cellular EADs provided both a trigger and a functional substrate for intermittent arrhythmias in homogeneous tissues. CONCLUSIONS: Our study demonstrates that the interaction among V, [Ca](i), and [Na](i) causes slow on-off switching (or bistability) of AP duration in cardiac myocytes and EAD-mediated arrhythmias and suggests a novel possible mechanism for intermittency of cardiac arrhythmias.


Assuntos
Arritmias Cardíacas/etiologia , Sinalização do Cálcio , Cálcio/metabolismo , Sistema de Condução Cardíaco/metabolismo , Potenciais da Membrana , Miócitos Cardíacos/metabolismo , Sódio/metabolismo , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Estimulação Cardíaca Artificial , Simulação por Computador , Retroalimentação Fisiológica , Sistema de Condução Cardíaco/fisiopatologia , Frequência Cardíaca , Técnicas In Vitro , Cinética , Masculino , Modelos Cardiovasculares , Coelhos
6.
Channels (Austin) ; 7(4): 318-21, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23756695

RESUMO

Hyperpolarization-activated, cyclic nucleotide-sensitive (HCN4) channels produce the "funny current," I(f), which contributes to spontaneous pacemaking in sinoatrial myocytes (SAMs). The C-terminus of HCN channels inhibits voltage-dependent gating, and cAMP binding relieves this "autoinhibition." We previously showed 1) that autoinhibition in HCN4 can be relieved in the absence of cAMP in some cellular contexts and 2) that PKA is required for ß adrenergic receptor (ßAR) signaling to HCN4 in SAMs. Together, these results raise the possibility that native HCN channels in SAMs may be insensitive to direct activation by cAMP. Here, we examined PKA-independent activation of If by cAMP in SAMs. We observed similar robust activation of If by exogenous cAMP and Rp-cAMP (an analog than cannot activate PKA). Thus PKA-dependent ßAR-to-HCN signaling does not result from cAMP insensitivity of sinoatrial HCN channels and might instead arise via PKA-dependent limitation of cAMP production and/or cAMP access to HCN channels in SAMs.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/farmacologia , Células Musculares/efeitos dos fármacos , Células Musculares/metabolismo , Nó Sinoatrial/citologia , Animais , Linhagem Celular , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Adrenérgicos beta/metabolismo
7.
J Gen Physiol ; 140(5): 557-66, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23109717

RESUMO

Hyperpolarization-activated, cyclic nucleotide-sensitive (HCN) channels produce the I(f) and I(h) currents, which are critical for cardiac pacemaking and neuronal excitability, respectively. HCN channels are modulated by cyclic AMP (cAMP), which binds to a conserved cyclic nucleotide-binding domain (CNBD) in the C terminus. The unliganded CNBD has been shown to inhibit voltage-dependent gating of HCNs, and cAMP binding relieves this "autoinhibition," causing a depolarizing shift in the voltage dependence of activation. Here we report that relief of autoinhibition can occur in the absence of cAMP in a cellular context- and isoform-dependent manner: when the HCN4 isoform was expressed in Chinese hamster ovary (CHO) cells, the basal voltage dependence was already shifted to more depolarized potentials and cAMP had no further effect on channel activation. This "pre-relief" of autoinhibition was specific both to HCN4 and to CHO cells; cAMP shifted the voltage dependence of HCN2 in CHO cells and of HCN4 in human embryonic kidney (HEK) cells. The pre-relief phenotype did not result from different concentrations of soluble intracellular factors in CHO and HEK cells, as it persisted in excised cell-free patches. Likewise, it did not arise from a failure of cAMP to bind to the CNBD of HCN4 in CHOs, as indicated by cAMP-dependent slowing of deactivation. Instead, a unique ∼300-amino acid region of the distal C terminus of HCN4 (residues 719-1012, downstream of the CNBD) was found to be necessary, but not sufficient, for the depolarized basal voltage dependence and cAMP insensitivity of HCN4 in CHO cells. Collectively, these data suggest a model in which multiple HCN4 channel domains conspire with membrane-associated intracellular factors in CHO cells to relieve autoinhibition in HCN4 channels in the absence of cAMP. These findings raise the possibility that such ligand-independent regulation could tune the activity of HCN channels and other CNBD-containing proteins in many physiological systems.


Assuntos
AMP Cíclico/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Ativação do Canal Iônico/efeitos dos fármacos , Animais , Sítios de Ligação , Células CHO , Cricetinae , Cricetulus , AMP Cíclico/farmacologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/química , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Células HEK293 , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Ativação do Canal Iônico/fisiologia , Canais Iônicos/química , Canais Iônicos/genética , Canais Iônicos/fisiologia , Ligantes , Potenciais da Membrana/efeitos dos fármacos , Canais de Potássio , Isoformas de Proteínas/fisiologia , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/fisiologia
8.
Channels (Austin) ; 5(2): 115-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21150293

RESUMO

The funny current, I(f), in sinoatrial myocytes is thought to contribute to the sympathetic fight-or-flight increase in heart rate. I(f) is produced by hyperpolarization-activated cyclic nucleotide sensitive-4 (HCN4) channels, and it is widely believed that sympathetic regulation of I(f) occurs via direct binding of cAMP to HCN4, independent of phosphorylation. However, we have recently shown that Protein Kinase A (PKA) activity is required for sympathetic regulation of I(f) and that PKA can directly phosphorylate HCN4. In the present study, we examined the effects of a myristoylated PKA inhibitory peptide (myr-PKI) on I(f) in mouse sinoatrial myocytes. We found that myr-PKI and another myristoylated peptide potently and specifically potentiated I(f) via a mechanism that did not involve PKA inhibition and that was independent of the peptide sequence, Protein Kinase C, or phosphatidylinositol-4,5-bisphosphate. The off-target activation of I(f) by myristoylated peptides limits their usefulness for studies of pacemaker mechanisms in sinoatrial myocytes.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Regulação Enzimológica da Expressão Gênica , Ácidos Mirísticos/química , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Difosfonatos/química , Eletrofisiologia/métodos , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Musculares/citologia , Fosforilação , Ligação Proteica , Proteína Quinase C/metabolismo , Nó Sinoatrial
9.
J Gen Physiol ; 136(3): 247-58, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20713547

RESUMO

The sympathetic nervous system increases heart rate by activating beta adrenergic receptors and increasing cAMP levels in myocytes in the sinoatrial node. The molecular basis for this response is not well understood; however, the cardiac funny current (I(f)) is thought to be among the end effectors for cAMP signaling in sinoatrial myocytes. I(f) is produced by hyperpolarization-activated cyclic nucleotide-sensitive (HCN4) channels, which can be potentiated by direct binding of cAMP to a conserved cyclic nucleotide binding domain in the C terminus of the channels. beta Adrenergic regulation of I(f) in the sinoatrial node is thought to occur via this direct binding mechanism, independent of phosphorylation. Here, we have investigated whether the cAMP-activated protein kinase (PKA) can also regulate sinoatrial HCN4 channels. We found that inhibition of PKA significantly reduced the ability of beta adrenergic agonists to shift the voltage dependence of I(f) in isolated sinoatrial myocytes from mice. PKA also shifted the voltage dependence of activation to more positive potentials for heterologously expressed HCN4 channels. In vitro phosphorylation assays and mass spectrometry revealed that PKA can directly phosphorylate at least 13 sites on HCN4, including at least three residues in the N terminus and at least 10 in the C terminus. Functional analysis of truncated and alanine-substituted HCN4 channels identified a PKA regulatory site in the distal C terminus of HCN4, which is required for PKA modulation of I(f). Collectively, these data show that native and expressed HCN4 channels can be regulated by PKA, and raise the possibility that this mechanism could contribute to sympathetic regulation of heart rate.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Frequência Cardíaca , Ativação do Canal Iônico , Nó Sinoatrial/enzimologia , Sistema Nervoso Simpático/fisiologia , Agonistas Adrenérgicos beta/farmacologia , Sequência de Aminoácidos , Animais , Células CHO , Clonagem Molecular , Cricetinae , Cricetulus , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Canais de Cátion Regulados por Nucleotídeos Cíclicos/química , Canais de Cátion Regulados por Nucleotídeos Cíclicos/efeitos dos fármacos , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Frequência Cardíaca/efeitos dos fármacos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Ativação do Canal Iônico/efeitos dos fármacos , Masculino , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Mutação , Técnicas de Patch-Clamp , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Nó Sinoatrial/efeitos dos fármacos , Nó Sinoatrial/inervação , Espectrometria de Massas em Tandem , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA