Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 44(7): 1601-1616, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38660803

RESUMO

BACKGROUND: RAB27A is a member of the RAS oncogene superfamily of GTPases and regulates cell secretory function. It, is expressed within blood vessels and perivascular adipose tissue. We hypothesized that loss of RAB27A would alter cardiovascular function. METHODS: Body weight of Rab27aash mice was measured from 2 to 18 months of age, along with glucose resorption at 6 and 12 months of age and glucose sensitivity at 18 months of age. Body weight and cellular and molecular features of perivascular adipose tissue and aortic tissue were examined in a novel C57BL/6J Rab27a null strain. Analyses included morphometric quantification and proteomic analyses. Wire myography measured vasoreactivity, and echocardiography measured cardiac function. Comparisons across ages and genotypes were evaluated via 2-way ANOVA with multiple comparison testing. Significance for myography was determined via 4-parameter nonlinear regression testing. RESULTS: Genome-wide association data linked rare human RAB27A variants with body mass index and glucose handling. Changes in glucose tolerance were observed in Rab27aash male mice at 18 months of age. In WT (wild-type) and Rab27a null male mice, body weight, adipocyte lipid area, and aortic area increased with age. In female mice, only body weight increased with age, independent of RAB27A presence. Protein signatures from male Rab27a null mice suggested greater associations with cardiovascular and metabolic phenotypes compared with female tissues. Wire myography results showed Rab27a null males exhibited increased vasoconstriction and reduced vasodilation at 8 weeks of age. Rab27a null females exhibited increased vasoconstriction and vasodilation at 20 weeks of age. Consistent with these vascular changes, male Rab27a null mice experienced age-related cardiomyopathy, with severe differences observed by 21 weeks of age. CONCLUSIONS: Global RAB27A loss impacted perivascular adipose tissue and thoracic aorta proteomic signatures, altered vasocontractile responses, and decreased left ventricular ejection fraction in mice.


Assuntos
Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas rab27 de Ligação ao GTP , Animais , Proteínas rab27 de Ligação ao GTP/genética , Proteínas rab27 de Ligação ao GTP/metabolismo , Masculino , Feminino , Camundongos , Fenótipo , Tecido Adiposo/metabolismo , Vasodilatação , Vasoconstrição , Fatores Etários , Proteômica , Fatores Sexuais , Aorta/metabolismo , Aorta/fisiopatologia , Humanos
2.
Biochem Biophys Res Commun ; 701: 149552, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38335918

RESUMO

The Interleukin-17 (IL17) family is a group of cytokines implicated in the etiology of several inflammatory diseases. Interleukin-17 receptor D (IL17RD), also known as Sef (similar expression to fibroblast growth factor) belonging to the family of IL17 receptors, has been shown to modulate IL17A-associated inflammatory phenotypes. The objective of this study was to test the hypothesis that IL17RD promotes endothelial cell activation and consequent leukocyte adhesion. We utilized primary human aortic endothelial cells and demonstrated that RNAi targeting of IL17RD suppressed transcript levels by 83 % compared to non-targeted controls. Further, RNAi knockdown of IL17RD decreased the adhesion of THP-1 monocytic cells onto a monolayer of aortic endothelial cells in response to IL17A. Additionally, we determined that IL17A did not significantly enhance the activation of canonical MAPK and NFκB pathways in endothelial cells, and further did not significantly affect the expression of VCAM-1 and ICAM-1 in aortic endothelial cells, which is contrary to previous findings. We also determined the functional relevance of our findings in vivo by comparing the expression of endothelial VCAM-1 and ICAM-1 and leukocyte infiltration in the aorta in Western diet-fed Il17rd null versus wild-type mice. Our results showed that although Il17rd null mice do not have significant alteration in aortic expression of VCAM-1 and ICAM-1 in endothelial cells, they exhibit decreased accumulation of proinflammatory monocytes and neutrophils, suggesting that endothelial IL17RD induced in vivo myeloid cell accumulation is not dependent on upregulation of VCAM-1 and ICAM-1 expression. We further performed proteomics analysis to identify potential molecular mediators of the IL17A/IL17RD signaling axis. Collectively, our results underscore a critical role for Il17rd in the regulation of aortic myeloid cell infiltration in the context of Western diet feeding.


Assuntos
Células Endoteliais , Molécula 1 de Adesão Intercelular , Humanos , Animais , Camundongos , Molécula 1 de Adesão Intercelular/metabolismo , Células Endoteliais/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo , Dieta Ocidental , Aorta/metabolismo , Células Mieloides/metabolismo , Monócitos/metabolismo , Adesão Celular , Receptores de Interleucina/metabolismo
3.
J Vasc Res ; 59(5): 261-274, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35797968

RESUMO

INTRODUCTION: We previously identified Notch2 in smooth muscle cells (SMC) in human atherosclerosis and found that signaling via Notch2 suppressed human SMC proliferation. Thus, we tested whether loss of Notch2 in SMC would alter atherosclerotic plaque progression using a mouse model. METHODS: Atherogenesis was examined at the brachiocephalic artery and aortic root in a vascular SMC null (inducible smooth muscle myosin heavy chain Cre) Notch2 strain on the ApoE-/- background. We measured plaque morphology and size, as well as lipid, inflammation, and smooth muscle actin content after Western diet. RESULTS: We generated an inducible SMC Notch2 null on the ApoE-/- background. We observed ∼90% recombination efficiency with no detectable Notch2 in the SMC. Loss of SMC Notch2 did not significantly change plaque size, lipid content, necrotic core, or medial area. However, loss of SMC Notch2 reduced the contractile SMC in brachiocephalic artery lesions and increased inflammatory content in aortic root lesions after 6 weeks of Western diet. These changes were not present with loss of SMC Notch2 after 14 weeks of Western diet. CONCLUSIONS: Our data show that loss of SMC Notch2 does not significantly reduce atherosclerotic lesion formation, although in early stages of plaque formation there are changes in SMC and inflammation.


Assuntos
Aterosclerose , Miócitos de Músculo Liso , Placa Aterosclerótica , Receptor Notch2 , Animais , Camundongos , Actinas , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Receptor Notch2/genética , Receptor Notch2/metabolismo , Miosinas de Músculo Liso
4.
J Vasc Res ; 59(1): 43-49, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34736260

RESUMO

Quantification of adipocyte size and number is routinely performed for white adipose tissues using existing image analysis software. However, thermogenic adipose tissue has multilocular adipocytes, making it difficult to distinguish adipocyte cell borders and to analyze lipid proportion using existing methods. We developed a simple, standardized method to quantify lipid content of mouse thermogenic adipose tissue. This method, using FIJI analysis of hematoxylin/eosin stained sections, was highly objective and highly reproducible, with ∼99% inter-rater reliability. The method was compared to direct lipid staining of adipose tissue, with comparable results. We used our method to analyze perivascular adipose tissue (PVAT) from C57BL/6 mice on a normal chow diet, compared to calorie restriction or a high fat diet, where lipid storage phenotypes are known. Results indicate that lipid content can be estimated within mouse PVAT in a quantitative and reproducible manner, and shows correlation with previously studied molecular and physiological measures.


Assuntos
Tecido Adiposo/metabolismo , Processamento de Imagem Assistida por Computador , Metabolismo dos Lipídeos , Microscopia Confocal , Microscopia de Fluorescência , Termogênese , Animais , Aorta Torácica , Restrição Calórica , Dieta Hiperlipídica , Corantes Fluorescentes , Indóis , Camundongos Endogâmicos C57BL , Fenótipo , Reprodutibilidade dos Testes , Coloração e Rotulagem
5.
Arterioscler Thromb Vasc Biol ; 40(9): 2227-2243, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32640901

RESUMO

OBJECTIVE: Perivascular adipose tissue (PVAT) surrounding arteries supports healthy vascular function. During obesity, PVAT loses its vasoprotective effect. We study pathological conversion of PVAT, which involves molecular changes in protein profiles and functional changes in adipocytes. Approach and Results: C57BL6/J mice were fed a 60% high-fat diet for 12 weeks or a cardioprotective 30% calorie-restricted diet for 5 weeks. Proteomic analysis identified PVAT as a molecularly distinct adipose depot, and novel markers for thermogenic adipocytes, such as GRP75 (stress-70 protein, mitochondrial), were identified. High-fat diet increased the similarity of protein signatures in PVAT and brown adipose, suggesting activation of a conserved whitening pathway. The whitening phenotype was characterized by suppression of UCP1 (uncoupling protein 1) and increased lipid deposition, leptin, and inflammation, and specifically in PVAT, elevated Notch signaling. Conversely, PVAT from calorie-restricted mice had decreased Notch signaling and less lipid. Using the Adipoq-Cre strain, we constitutively activated Notch1 signaling in adipocytes, which phenocopied the changes in PVAT caused by a high-fat diet, even on a standard diet. Preadipocytes from mouse PVAT expressed Sca1, CD140a, Notch1, and Notch2, but not CD105, showing differences compared with preadipocytes from other depots. Inhibition of Notch signaling during differentiation of PVAT-derived preadipocytes reduced lipid deposition and adipocyte marker expression. CONCLUSIONS: PVAT shares features with other adipose depots, but has a unique protein signature that is regulated by dietary stress. Increased Notch signaling in PVAT is sufficient to initiate the pathological conversion of PVAT by promoting adipogenesis and lipid accumulation and may thus prime the microenvironment for vascular disease.


Assuntos
Adipócitos Brancos/metabolismo , Adipogenia , Tecido Adiposo Branco/metabolismo , Lipogênese , Obesidade/metabolismo , Receptores Notch/metabolismo , Adipócitos Brancos/patologia , Tecido Adiposo Branco/patologia , Adiposidade , Animais , Ataxina-1/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Restrição Calórica , Dieta Hiperlipídica , Modelos Animais de Doenças , Endoglina/metabolismo , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/genética , Obesidade/patologia , Fenótipo , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Proteômica , Receptor Notch1/genética , Receptor Notch1/metabolismo , Receptor Notch2/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores Notch/genética , Transdução de Sinais
6.
Lab Invest ; 99(3): 290-304, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29795127

RESUMO

Atherosclerosis is the most common cause of heart disease and stroke. The use of animal models has advanced our understanding of the molecular signaling that contributes to atherosclerosis. Further understanding of this degenerative process in humans will require human tissue. Plaque removed during endarterectomy procedures to relieve arterial obstructions is usually discarded, but can be an important source of diseased cells. Resected tissue from carotid and femoral endarterectomy procedures were compared with carotid arteries from donors with no known cardiovascular disease. Vascular smooth muscle cells (SMC) contribute to plaque formation and may determine susceptibility to rupture. Notch signaling is implicated in the progression of atherosclerosis, and plays a receptor-specific regulatory role in SMC. We defined protein localization of Notch2 and Notch3 within medial and plaque SMC using immunostaining, and compared Notch2 and Notch3 levels in total plaques with whole normal arteries using immunoblot. We successfully derived SMC populations from multiple endarterectomy specimens for molecular analysis. To better define the protein signature of diseased SMC, we utilized sequential window acquisition of all theoretical spectra (SWATH) proteomic analysis to compare normal carotid artery SMC with endarterectomy-derived SMC. Similarities in protein profile and differentiation markers validated the SMC identity of our explants. We identified a subset of differentially expressed proteins that are candidates as functional markers of diseased SMC. To understand how Notch signaling may affect diseased SMC, we performed Jagged1 stimulation of primary cultures. In populations that displayed significant growth, Jagged1 signaling through Notch2 suppressed proliferation; cultures with low growth potential were non-responsive to Jagged1. In addition, Jagged1 did not promote contractile smooth muscle actin nor have a significant effect on the mature differentiated phenotype. Thus, SMC derived from atherosclerotic lesions show distinct proteomic profiles and have altered Notch signaling in response to Jagged1 as a differentiation stimulus, compared with normal SMC.


Assuntos
Aterosclerose/metabolismo , Aterosclerose/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Receptores Notch/metabolismo , Idoso , Doenças das Artérias Carótidas/metabolismo , Doenças das Artérias Carótidas/patologia , Proliferação de Células , Células Cultivadas , Endarterectomia , Feminino , Humanos , Imuno-Histoquímica , Proteína Jagged-1/metabolismo , Masculino , Pessoa de Meia-Idade , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Receptor Notch2/metabolismo , Receptor Notch3/metabolismo , Transdução de Sinais
7.
Circ Res ; 121(4): e9-e19, 2017 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28684631

RESUMO

The biomedical research enterprise depends on the fair and objective peer review of research grants, leading to the distribution of resources through efficient and robust competitive methods. In the United States, federal funding agencies and foundations collectively distribute billions of dollars annually to support biomedical research. For the American Heart Association, a Peer Review Subcommittee is charged with establishing the highest standards for peer review. This scientific statement reviews the current literature on peer review practices, describes the current American Heart Association peer review process and those of other agencies, analyzes the strengths and weaknesses of American Heart Association peer review practices, and recommends best practices for the future.


Assuntos
American Heart Association , Pesquisa Biomédica/normas , Revisão por Pares/normas , Apoio à Pesquisa como Assunto/normas , Pesquisa Biomédica/economia , Pesquisa Biomédica/métodos , Humanos , Revisão por Pares/métodos , Apoio à Pesquisa como Assunto/economia , Apoio à Pesquisa como Assunto/métodos , Estados Unidos
8.
Arterioscler Thromb Vasc Biol ; 38(7): 1576-1593, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29853569

RESUMO

OBJECTIVE: Vascular remodeling is associated with complex molecular changes, including increased Notch2, which promotes quiescence in human smooth muscle cells. We used unbiased protein profiling to understand molecular signatures related to neointimal lesion formation in the presence or absence of Notch2 and to test the hypothesis that loss of Notch2 would increase neointimal lesion formation because of a hyperproliferative injury response. APPROACH AND RESULTS: Murine carotid arteries isolated at 6 or 14 days after ligation injury were analyzed by mass spectrometry using a data-independent acquisition strategy in comparison to uninjured or sham injured arteries. We used a tamoxifen-inducible, cell-specific Cre recombinase strain to delete the Notch2 gene in smooth muscle cells. Vessel morphometric analysis and immunohistochemical staining were used to characterize lesion formation, assess vascular smooth muscle cell proliferation, and validate proteomic findings. Loss of Notch2 in smooth muscle cells leads to protein profile changes in the vessel wall during remodeling but does not alter overall lesion morphology or cell proliferation. Loss of smooth muscle Notch2 also decreases the expression of enhancer of rudimentary homolog, plectin, and annexin A2 in vascular remodeling. CONCLUSIONS: We identified unique protein signatures that represent temporal changes in the vessel wall during neointimal lesion formation in the presence and absence of Notch2. Overall lesion formation was not affected with loss of smooth muscle Notch2, suggesting compensatory pathways. We also validated the regulation of known injury- or Notch-related targets identified in other vascular contexts, providing additional insight into conserved pathways involved in vascular remodeling.


Assuntos
Lesões das Artérias Carótidas/metabolismo , Espectrometria de Massas , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neointima , Proteômica/métodos , Receptor Notch2/metabolismo , Remodelação Vascular , Idoso , Idoso de 80 Anos ou mais , Animais , Anexina A2/metabolismo , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/patologia , Artéria Carótida Primitiva/metabolismo , Artéria Carótida Primitiva/patologia , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Modelos Animais de Doenças , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Plectina/metabolismo , Receptor Notch2/deficiência , Receptor Notch2/genética , Transdução de Sinais , Fatores de Transcrição/metabolismo
9.
J Cell Biochem ; 119(4): 3267-3279, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29105817

RESUMO

Signals from growth factors or mechanical stimuli converge to promote vascular smooth muscle cell (VSMC) migration and proliferation, key events in the pathogenesis of intimal hyperplasia upon vascular injury. Spry1, a regulator of receptor tyrosine kinases (RTK), plays a role in maintaining the contractile phenotype of VSMC. The aim of the current study was to determine the role of Spry1 in VSMC proliferation in vitro and injury induced neointimal hyperplasia in vivo. VSMC proliferation and neointima formation were evaluated in cultured human aortic SMC (hAoSMC) and ligation-induced injury of mouse carotid arteries from Spry1 gene targeted mice, and their corresponding wild type littermates. Human Spry1 or non-targeting control lentiviral shRNAs were used to knock down Spry1 in hAoSMC. Time course cell cycle analysis showed a reduced fraction of S-phase cells at 12 and 24 h after growth medium stimulation in Spry1 shRNA transduced hAoSMC. Consistent with reduced S-phase entry, the induction of cyclinD1 and the levels of pRbS807/S811, pH3Ser10, and pCdc2 were also reduced, while the cell cycle inhibitor p27Kip1 was maintained in Spry1 knockdown hAoSMC. In vivo, loss of Spry1 attenuated carotid artery ligation-induced neointima formation in mice, and this effect was accompanied by a decrease in cell proliferation similar to the in vitro results. Our findings demonstrate that loss of Spry1 attenuates mitogen-induced VSMC proliferation, and thus injury-induced neointimal hyperplasia likely via insufficient activation of Akt signaling causing decreased cyclinD1 and increased p27Kip1 and a subsequent decrease in Rb and cdc2 phosphorylation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Lesões das Artérias Carótidas/complicações , Proteínas de Membrana/genética , Músculo Liso Vascular/citologia , Neointima/genética , Fosfoproteínas/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/metabolismo , Ciclo Celular , Proliferação de Células , Células Cultivadas , Ciclina D1/genética , Ciclina D1/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Músculo Liso Vascular/metabolismo , Neointima/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
10.
Cardiovasc Drugs Ther ; 32(5): 519-530, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30105417

RESUMO

PURPOSE: Perivascular adipose tissue (PVAT) surrounds blood vessels and regulates vascular tone through paracrine secretion of cytokines. During conditions promoting cardiometabolic dysfunction, such as obesity, cytokine secretion is altered towards a proinflammatory and proatherogenic profile. Despite the clinical implications for cardiovascular disease, studies addressing the biology of human PVAT remain limited. We are interested in characterizing the resident adipose progenitor cells (APCs) because of their potential role in PVAT expansion during obesity. We also focused on proteins regulating paracrine interactions, including the small GTPase Rab27a, which regulates protein trafficking and secretion. METHODS: PVAT from the ascending aorta was collected from patients with severe cardiovascular disease undergoing coronary artery bypass grafting (CABG). Freshly-isolated PVAT was digested and APC expanded in culture for characterizing progenitor markers, evaluating adipogenic potential and assessing the function(s) of Rab27a. RESULTS: Using flow cytometry, RT-PCR, and immunoblot, we characterized APC from human PVAT as negative for CD45 and CD31 and expressing CD73, CD105, and CD140A. These APCs differentiate into multilocular, UCP1-producing adipocytes in vitro. Rab27a was detected in interstitial cells of human PVAT in vivo and along F-actin tracks of PVAT-APC in vitro. Knockdown of Rab27a using siRNA in PVAT-APC prior to induction resulted in a marked reduction in lipid accumulation and reduced expression of adipogenic differentiation markers. CONCLUSIONS: PVAT-APC from CABG donors express common adipocyte progenitor markers and differentiate into UCP1-containing adipocytes. Rab27a has an endogenous role in promoting the maturation of adipocytes from human PVAT-derived APC.


Assuntos
Adipogenia , Tecido Adiposo/enzimologia , Células-Tronco/enzimologia , Proteínas rab27 de Ligação ao GTP/metabolismo , Tecido Adiposo/citologia , Adulto , Idoso , Aorta , Biomarcadores/metabolismo , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Humanos , Metabolismo dos Lipídeos , Masculino , Pessoa de Meia-Idade , Fenótipo , Transdução de Sinais , Proteínas rab27 de Ligação ao GTP/genética
11.
Cancer Cell Int ; 17: 53, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28507453

RESUMO

[This corrects the article DOI: 10.1186/s12935-016-0292-7.].

12.
J Cell Biochem ; 117(9): 2182-93, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26910604

RESUMO

Our objective was to characterize lipid profiles in cell models of adipocyte differentiation in comparison to mouse adipose tissues in vivo. A novel lipid extraction strategy was combined with global lipid profiling using direct infusion and sequential precursor ion fragmentation, termed MS/MS(ALL) . Perirenal and inguinal white adipose tissue and interscapular brown adipose tissues from adult C57BL/6J mice were analyzed. 3T3-L1 preadipocytes, ear mesenchymal progenitor cells, and brown adipose-derived BAT-C1 cells were also characterized. Over 3000 unique lipid species were quantified. Principal component analysis showed that perirenal versus inguinal white adipose tissues varied in lipid composition of triacyl- and diacylglycerols, sphingomyelins, glycerophospholipids and, notably, cardiolipin CL 72:3. In contrast, hexosylceramides and sphingomyelins distinguished brown from white adipose. Adipocyte differentiation models showed broad differences in lipid composition among themselves, upon adipogenic differentiation, and with adipose tissues. Palmitoyl triacylglycerides predominate in 3T3-L1 differentiation models, whereas cardiolipin CL 72:1 and SM 45:4 were abundant in brown adipose-derived cell differentiation models, respectively. MS/MS(ALL) data suggest new lipid biomarkers for tissue-specific lipid contributions to adipogenesis, thus providing a foundation for using in vitro models of adipogenesis to reflect potential changes in adipose tissues in vivo. J. Cell. Biochem. 117: 2182-2193, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Adipócitos Brancos/metabolismo , Adipogenia/fisiologia , Tecido Adiposo Branco/metabolismo , Metabolismo dos Lipídeos/fisiologia , Modelos Biológicos , Células 3T3-L1 , Adipócitos Brancos/citologia , Tecido Adiposo Branco/citologia , Animais , Camundongos
13.
Cancer Cell Int ; 16: 19, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26973433

RESUMO

BACKGROUND: Cancer stem cells contribute to tumor initiation, heterogeneity, and recurrence, and are critical targets in cancer therapy. Sprouty4 (Spry4) is a potent inhibitor of signal transduction pathways elicited by receptor tyrosine kinases, and has roles in regulating cell proliferation, migration and differentiation. Spry4 has been implicated as a tumor suppressor and in modulating embryonic stem cells. OBJECTIVES: The purpose of this research was to test the novel idea that Spry4 regulates cancer stem cell properties in breast cancer. METHODS: Loss-of function of Spry4 in human MDA-MB-231 cell was used to test our hypothesis. Spry4 knockdown or control cell lines were generated using lentiviral delivery of human Spry4 or non-targeting control shRNAs, and then selected with 2 µg/ml puromycin. Cell growth and migratory abilities were determined using growth curve and cell cycle flow cytometry analyses and scratch assays, respectively. Xenograft tumor model was used to determine the tumorigenic activity and metastasis in vivo. Cancer stem cell related markers were evaluated using immunoblotting assays and fluorescence-activated cell sorting. Cancer stem cell phenotype was evaluated using in vitro mammosphere formation and drug sensitivity tests, and in vivo limiting dilution tumor formation assay. RESULTS: Two out of three tested human Spry4 shRNAs significantly suppressed the expression of endogenous Spry4 in MDA-MB-231 cells. Suppressing Spry4 expression increased MDA-MB-231 cell proliferation and migration. Suppressing Spry4 increased ß3-integrin expression, and CD133(+)CD44(+) subpopulation. Suppressing Spry4 increased mammosphere formation, while decreasing the sensitivity of MDA-MB-231 cells to Paclitaxel treatment. Finally, suppressing Spry4 increased the potency of MDA-MB-231 cell tumor initiation, a feature attributed to cancer stem cells. CONCLUSIONS: Our findings provide novel evidence that endogenous Spry4 may have tumor suppressive activity in breast cancer by suppressing cancer stem cell properties in addition to negative effects on tumor cell proliferation and migration.

14.
Arterioscler Thromb Vasc Biol ; 35(12): 2626-37, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26471266

RESUMO

OBJECTIVE: Bone morphogenetic protein-9 (BMP9)/activin-like kinase-1 and delta-like 4 (DLL4)/Notch promote endothelial quiescence, and we aim to understand mechanistic interactions between the 2 pathways. We identify new targets that contribute to endothelial quiescence and test whether loss of Dll4(+/-) in adult vasculature alters BMP signaling. APPROACH AND RESULTS: Human endothelial cells respond synergistically to BMP9 and DLL4 stimulation, showing complete quiescence and induction of HEY1 and HEY2. Canonical BMP9 signaling via activin-like kinase-1-Smad1/5/9 was disrupted by inhibition of Notch signaling, even in the absence of exogenous DLL4. Similarly, DLL4 activity was suppressed when the basal activin-like kinase-1-Smad1/5/9 pathway was inhibited, showing that these pathways are interdependent. BMP9/DLL4 required induction of P27(KIP1) for quiescence, although multiple factors are involved. To understand these mechanisms, we used proteomics data to identify upregulation of thrombospondin-1, which contributes to the quiescence phenotype. To test whether Dll4 regulates BMP/Smad pathways and endothelial cell phenotype in vivo, we characterized the vasculature of Dll4(+/-) mice, analyzing endothelial cells in the lung, heart, and aorta. Together with changes in endothelial structure and vascular morphogenesis, we found that loss of Dll4 was associated with a significant upregulation of pSmad1/5/9 signaling in lung endothelial cells. Because steady-state endothelial cell proliferation rates were not different in the Dll4(+/-) mice, we propose that the upregulation of pSmad1/5/9 signaling compensates to maintain endothelial cell quiescence in these mice. CONCLUSIONS: DLL4/Notch and BMP9/activin-like kinase-1 signaling rely on each other's pathways for full activity. This represents an important mechanism of cross talk that enhances endothelial quiescence and sensitively coordinates cellular responsiveness to soluble and cell-tethered ligands.


Assuntos
Senescência Celular , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Células Endoteliais/metabolismo , Fatores de Diferenciação de Crescimento/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Receptor Notch1/metabolismo , Trombospondina 1/metabolismo , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Aorta/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação ao Cálcio , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Células Cultivadas , Vasos Coronários/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Genótipo , Fator 2 de Diferenciação de Crescimento , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Pulmão/irrigação sanguínea , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Interferência de RNA , Receptor Notch1/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Proteínas Smad Reguladas por Receptor/genética , Proteínas Smad Reguladas por Receptor/metabolismo , Trombospondina 1/genética , Transfecção
15.
Glia ; 63(12): 2198-207, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26148976

RESUMO

Infarcted regions of the brain after stroke are segregated from the intact brain by scar tissue comprising both fibrous and glial components. The extent and quality of scarring is influenced by inflammation. The matricellular glycoprotein osteopontin (OPN) is strongly induced in myeloid cells after stroke and may contribute to repair of ischemic brain lesions. To elucidate the role of OPN in scar formation, we induced photothrombotic brain infarction, characterized by circumscribed cortical infarctions with a well-defined border zone toward the intact brain parenchyma. The cellular source and functional role of OPN was addressed by studies in OPN null (OPN(-/-) ) mice, wild-type mice depleted of hematogenous monocytes/macrophages by clodronate-filled liposome treatment, and CCR2(-/-) bone marrow chimeric mice characterized by impaired hematogenous macrophage influx into the infarctions. OPN was mainly produced by hematogenous macrophages infiltrating into the inner border zone of the infarcts whereas astrocyte activation occurred in the outer border zone. In OPN(-/-) as well as macrophage-depleted mice, reactive astrocytes failed to properly extend processes from the periphery toward the center of the infarctions. This was associated with incomplete coverage of neovessels by astrocytic endfeet and persistent leakiness of the damaged blood brain barrier. In conclusion, OPN produced by hematogenous macrophages induces astrocyte process extension toward the infarct border zone, which may contribute to repair of the ischemic neurovascular unit.


Assuntos
Astrócitos/fisiologia , Barreira Hematoencefálica/fisiopatologia , Isquemia Encefálica/fisiopatologia , Macrófagos/metabolismo , Osteopontina/metabolismo , Acidente Vascular Cerebral/fisiopatologia , Animais , Aquaporina 4/metabolismo , Astrócitos/patologia , Barreira Hematoencefálica/patologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteopontina/genética , Receptores CCR2/genética , Receptores CCR2/metabolismo , Acidente Vascular Cerebral/patologia
16.
Prostate ; 75(9): 907-16, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25728608

RESUMO

BACKGROUND: PTEN/AKT signaling plays a key role in prostate cancer development and maintenance of prostate cancer stem cells. How other oncogenes or tumor suppressors interact with this pathway remain to be elucidated. SLUG is an zinc finger transcription factor of the Snail superfamily, and it promotes cancer metastasis and determines the mammary stem cell state. METHODS: SLUG was overexpressed in cells by retroviral vector and knockdown of SLUG and PTEN was mediated by shRNAs-expressing lentiviruses. Expression level of SLUG and PTEN was examined by Western blot, RT-PCR, and qPCR analyses. PTEN promoter activity was measured by luciferase reporter assay. ChIP assay was used to measure the binding between SLUG and the PTEN promoter in vivo. RESULT: We showed that overexpression of SLUG decreased expression of PTEN tumor repressor in prostate cancer cell lines 22RV1 and DU145; conversely, knockdown of SLUG expression elevated PTEN expresson at both protein and RNA level in these cells. We demonstrated that SLUG overexpression inhibits PTEN promoter activity through the proximal promoter region in prostate cancer cells. By ChIP assay, we confirmed that SLUG directly binds to the PTEN promoter region covering the E-box sites. We also showed that Slug deficiency leads to an increased expression of PTEN in mouse embryo fibroblasts and prostate tissues. Importantly, we found that overexpression of SLUG increases drug resistance of DU145 prostate cancer cell line and knockdown of SLUG by shRNA sensitizes DU145 cell line to chemotherapeutic drugs. We further demonstrated that PTEN knockdown converts drug sensitivity of DU145 cells expressing SLUG shRNA to anticancer drugs. CONCLUSION: We provide compelling evidence showing that PTEN is a direct functional target of SLUG. Our findings offer new insight in the regulation of the PTEN/AKT pathway and provide a molecular basis for potential targeted therapies of prostate cancer Prostate 75:907-916, 2015. © 2015 Wiley Periodicals, Inc.


Assuntos
PTEN Fosfo-Hidrolase/biossíntese , Neoplasias da Próstata/metabolismo , Fatores de Transcrição/biossíntese , Animais , Western Blotting , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , PTEN Fosfo-Hidrolase/antagonistas & inibidores , PTEN Fosfo-Hidrolase/genética , Regiões Promotoras Genéticas , Neoplasias da Próstata/genética , RNA Neoplásico/química , RNA Neoplásico/genética , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética
17.
Angiogenesis ; 18(1): 31-46, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25249331

RESUMO

A more complete understanding of the mechanisms that regulate the angiogenic switch, which contributes to the conversion of small dormant tumors to actively growing malignancies, is important for the development of more effective anti-angiogenic strategies for cancer therapy. While significant progress has been made in understanding the complex mechanisms by which integrin αvß3 expressed in endothelial cells governs angiogenesis, less is known concerning the ability of αvß3 expressed within the tumor cell compartment to modulate the angiogenic output of a tumor. Here we provide evidence that αvß3 expressed in melanoma cells may contribute to the suppression of IGFBP-4, an important negative regulator of IGF-1 signaling. Given the multiple context-dependent roles for αvß3 in angiogenesis and tumor progression, our novel findings provide additional molecular insight into how αvß3 may govern the angiogenic switch by a mechanism associated with a p38 MAPK and matrix metalloproteinases-dependent regulation of the endogenous angiogenesis inhibitor IGFBP-4.


Assuntos
Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Integrina alfaVbeta3/antagonistas & inibidores , Melanoma/fisiopatologia , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células , Primers do DNA/genética , Imunofluorescência , Humanos , Imuno-Histoquímica , Melanoma/complicações , Neovascularização Patológica/etiologia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Microtomografia por Raio-X
18.
Curr Atheroscler Rep ; 17(6): 509, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25813213

RESUMO

Despite their discovery as angiogenic factors and mitogens for endothelial cells more than 30 years ago, much remains to be determined about the role of fibroblast growth factors (FGFs) and their receptors in vascular development, homeostasis, and disease. In vitro studies show that members of the FGF family stimulate growth, migration, and sprouting of endothelial cells, and growth, migration, and phenotypic plasticity of vascular smooth muscle cells. Recent studies have revealed important roles for FGFs and their receptors in the regulation of endothelial cell sprouting and vascular homeostasis in vivo. Furthermore, recent work has revealed roles for FGFs in atherosclerosis, vascular calcification, and vascular dysfunction. The large number of FGFs and their receptors expressed in endothelial and vascular smooth muscle cells complicates these studies. In this review, we summarize recent studies in which new and unanticipated roles for FGFs and their receptors in the vasculature have been revealed.


Assuntos
Células Endoteliais/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Transdução de Sinais/fisiologia , Animais , Vasos Sanguíneos/metabolismo , Humanos
19.
Circ Res ; 113(8): 975-85, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-23965337

RESUMO

RATIONALE: Deregulated vascular smooth muscle cell (VSMC) proliferation contributes to multiple vascular pathologies, and Notch signaling regulates VSMC phenotype. OBJECTIVE: Previous work focused on Notch1 and Notch3 in VSMC during vascular disease; however, the role of Notch2 is unknown. Because injured murine carotid arteries display increased Notch2 in VSMC as compared with uninjured arteries, we sought to understand the impact of Notch2 signaling in VSMCs. METHODS AND RESULTS: In human primary VSMCs, Jagged-1 (Jag-1) significantly reduced proliferation through specific activation of Notch2. Increased levels of p27(kip1) were observed downstream of Jag-1/Notch2 signaling and were required for cell cycle exit. Jag-1 activation of Notch resulted in increased phosphorylation on serine 10, decreased ubiquitination, and prolonged half-life of p27(kip1). Jag-1/Notch2 signaling robustly decreased S-phase kinase-associated protein, an F-box protein that degrades p27(kip1) during G1. Overexpression of S-phase kinase-associated protein before Notch activation by Jag-1 suppressed the induction of p27(kip1). Additionally, increased Notch2 and p27(kip1) expression was colocalized to the nonproliferative zone of injured arteries as indicated by co-staining with proliferating cell nuclear antigen, whereas Notch3 was expressed throughout normal and injured arteries, suggesting Notch2 may negatively regulate lesion formation. CONCLUSIONS: We propose a receptor-specific function for Notch2 in regulating Jag-1-induced p27(kip1) expression and growth arrest in VSMCs. During vascular remodeling, colocalization of Notch2 and p27(kip1) to the nonproliferating region supports a model where Notch2 activation may negatively regulate VSMC proliferation to lessen the severity of the lesion. Thus, Notch2 is a potential target for control of VSMC hyperplasia.


Assuntos
Lesões das Artérias Carótidas/metabolismo , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Receptor Notch2/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/patologia , Ciclo Celular , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p27/genética , Modelos Animais de Doenças , Humanos , Hiperplasia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteína Jagged-1 , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Músculo Liso Vascular/lesões , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Fenótipo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Interferência de RNA , Receptor Notch2/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Proteínas Serrate-Jagged , Transdução de Sinais , Fatores de Tempo , Transfecção
20.
Blood ; 120(20): 4263-73, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23018639

RESUMO

BMP9 signaling has been implicated in hereditary hemorrhagic telangiectasia (HHT) and vascular remodeling, acting via the HHT target genes, endoglin and ALK1. This study sought to identify endothelial BMP9-regulated proteins that could affect the HHT phenotype. Gene ontology analysis of cDNA microarray data obtained after BMP9 treatment of primary human endothelial cells indicated regulation of chemokine, adhesion, and inflammation pathways. These responses included the up-regulation of the chemokine CXCL12/SDF1 and down-regulation of its receptor CXCR4. Quantitative mass spectrometry identified additional secreted proteins, including the chemokine CXCL10/IP10. RNA knockdown of endoglin and ALK1 impaired SDF1/CXCR4 regulation by BMP9. Because of the association of SDF1 with ischemia, we analyzed its expression under hypoxia in response to BMP9 in vitro, and during the response to hindlimb ischemia, in endoglin-deficient mice. BMP9 and hypoxia were additive inducers of SDF1 expression. Moreover, the data suggest that endoglin deficiency impaired SDF1 expression in endothelial cells in vivo. Our data implicate BMP9 in regulation of the SDF1/CXCR4 chemokine axis in endothelial cells and point to a role for BMP9 signaling via endoglin in a switch from an SDF1-responsive autocrine phenotype to an SDF1 nonresponsive paracrine state that represses endothelial cell migration and may promote vessel maturation.


Assuntos
Células Endoteliais/citologia , Fatores de Diferenciação de Crescimento/fisiologia , Neovascularização Fisiológica/fisiologia , Receptores de Ativinas Tipo I/fisiologia , Receptores de Activinas Tipo II/fisiologia , Animais , Antígenos CD/fisiologia , Aorta/citologia , Comunicação Autócrina , Hipóxia Celular , Movimento Celular , Quimiocina CXCL12/biossíntese , Quimiocina CXCL12/metabolismo , Meios de Cultivo Condicionados , Endoglina , Células Endoteliais/efeitos dos fármacos , Fator 2 de Diferenciação de Crescimento/farmacologia , Fator 2 de Diferenciação de Crescimento/fisiologia , Membro Posterior/irrigação sanguínea , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Isquemia/fisiopatologia , Camundongos , Comunicação Parácrina , RNA Mensageiro/biossíntese , RNA Interferente Pequeno/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Superfície Celular/fisiologia , Fator de Crescimento Transformador beta1/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA